Понятие «домен коллизий». Методика расчета конфигурации сети зернет 10 мв/с. На сонове длин сегментов и стандартных правил, а также точный тарчет на основание таблиц комитета ieee значений pdv и PW. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие «домен коллизий». Методика расчета конфигурации сети зернет 10 мв/с. На сонове длин сегментов и стандартных правил, а также точный тарчет на основание таблиц комитета ieee значений pdv и PW.



В технологии Ethernet, независимо от применяемого стандарта физического уровня, существует понятие домена коллизий.

Домен коллизий (collision domain) - это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части этой сети коллизия возникла. Сеть Ethernet, построенная на повторителях, всегда образует один домен коллизий. Домен коллизий соответствует одной разделяемой среде. Мосты, коммутаторы и маршрутизаторы делят сеть Ethernet на несколько доменов коллизий.

Узлы, образующие один домен коллизий, работают синхронно, как единая распределенная электронная схема.

Общие характеристики стандартов Ethernet 10 Мбит/с: номинальная пропускная способность – 10Мбит/с, максимальное число станций в сети – 1024, максимальное расстояние между узлами в сети – 2500 м, максимальное число сигментов в сети – 5.

Соблюдение многочисленных ограничений, установленных для различных стандартов физического уровня сетей Ethernet, гарантирует корректную работу сети (естественно, при исправном состоянии всех элементов физического уровня).

Наиболее часто приходится проверять ограничения, связанные с длиной отдельного сегмента кабеля, а также количеством повторителей и общей длиной сети. Правила «5-4-3» для коаксиальных сетей и «4-х хабов» для сетей на основе витой пары и оптоволокна не только дают гарантии работоспособности сети, но и оставляют большой «запас прочности» сети. Например, если посчитать время двойного оборота в сети, состоящей из 4-х повторителей 10Base-5 и 5-ти сегментов максимальный длины 500 м, то окажется, что оно составляет 537 битовых интервала. А так как время передачи кадра минимальной длины, состоящего вместе с преамбулой 72 байт, равно 575 битовым интервалам, то видно, что разработчики стандарта Ethernet оставили 38 битовых интервала в качестве запаса для надежности. Тем не менее комитет 802.3 говорит, что и 4 дополнительных битовых интервала создают достаточный запас надежности.

Комитет IEEE 802.3 приводит исходные данные о задержках, вносимых повторителями и различными средами передачи данных, для тех специалистов, которые хотят самостоятельно рассчитывать максимальное количество повторителей и максимальную общую длину сети, не довольствуясь теми значениями, которые приведены в правилах «5-4-3» и «4-х хабов». Особенно такие расчеты полезны для сетей, состоящих из смешанных кабельных систем, например коаксиала и оптоволокна, на которые правила о количестве повторителей не рассчитаны. При этом максимальная длина каждого отдельного физического сегмента должна строго соответствовать стандарту, то есть 500 м для «толстого» коаксиала, 100 м для витой пары и т.д.

Чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо выполнение четырех основных условий: количество станций в сети не более 1024; максимальная длина каждого физического сегмента не более величины, определенной в соответствующем стандарте физического уровня; время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала; сокращение межкадрового интервала IPG (Path Variability Value, PW) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала. Так как при отправке кадров конечные узлы обеспечивают начальное межкадровое расстояние в 96 битовых интервала, то после прохождения повторителя оно должно быть не меньше, чем 96 - 49 = 47 битовых интервала.

Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и общую длину сети в 2500 м.

Для упрощения расчетов обычно используются справочные данные IEEE, содержащие значения задержек распространения сигналов в повторителях, приемопередатчиках и различных физических средах.

Комитет 802.3 старался максимально упростить выполнение расчетов, поэтому данные, приведенные в таблице, включают сразу несколько этапов прохождения сигнала. Например, задержки, вносимые повторителем, состоят из задержки входного трансивера, задержки блока повторения и задержки выходного трансивера. Тем не менее в таблице все эти задержки представлены одной величиной, названной базой сегмента. Чтобы не нужно было два раза складывать задержки, вносимые кабелем, в таблице даются удвоенные величины задержек для каждого типа кабеля.

В таблице используются также такие понятия, как левый сегмент, правый сегмент и промежуточный сегмент. С каждым сегментом связана постоянная задержка, названная базой, которая зависит только от типа сегмента и от положения сегмента на пути сигнала (левый, промежуточный или правый). База правого сегмента, в котором возникает коллизия, намного превышает базу левого и промежуточных сегментов.

Кроме этого, с каждым сегментом связана задержка распространения сигнала вдоль кабеля сегмента, которая зависит от длины сегмента и вычисляется путем умножения времени распространения сигнала по одному метру кабеля (в битовых интервалах) на длину кабеля в метрах.

Расчет заключается в вычислении задержек, вносимых каждым отрезком кабеля (приведенная в таблице задержка сигнала на 1 м кабеля умножается на длину сегмента), а затем суммировании этих задержек с базами левого, промежуточных и правого сегментов. Общее значение PDV не должно превышать 575.

Чтобы признать конфигурацию сети корректной, нужно рассчитать также уменьшение межкадрового интервала повторителями, то есть величину PW.

Для расчета PW также можно воспользоваться значениями максимальных величин уменьшения межкадрового интервала при прохождении повторителей различных физических сред, рекомендованными IEEE.

Предельное значение - 49.

38 Основные предпосылки создания технологии Fast Ethernet. Физический уровень технологии. Три варианта кабельной системы. Способы поддержки миграции сетей Ethernet 10МВ/с в стандартах Fast Ethernet.

Классический 10-мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х годов начала ощущаться его недостаточная пропускная способность. Поэтому многие сегменты 10-мегабитного Ethernet стали перегруженными, реакция серверов в них значительно упала, а частота возникновения коллизий существенно возросла, еще более снижая полезную пропускную способность. Назрела необходимость в разработке «нового» Ethernet, то есть технологии, которая была бы такой же эффективной по соотношению цена/качество при производительности 100 Мбит/с. В центре дискуссий была проблема сохранения случайного метода доступа CSMA/CD. Предложение Fast Ethernet Alliance сохраняло этот метод и тем самым обеспечивало преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/с.

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:

1. Волоконно-оптический многомодовый кабель, используются два волокна.

2. витая пара категории 5, используются две пары;

3. витая пара категории 3, используются четыре пары.

Коаксиальный кабель, давший миру первую сеть Ethernet, в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Это общая тенденция многих новых технологий, поскольку на небольших расстояниях витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. На больших расстояниях оптическое волокно обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Для всех трех стандартов справедливы следующие утверждения и характеристики:

-Форматы кадров технологии Fast Ethernetee отличаются от форматов кадров технологий 10-мегабитного Ethernet.

-Межкадровый интервал (IPG) равен 0,96 мкс, а битовый интервал равен 10 нс.

-Признаком свободного состояния среды является передача по ней символа простоя источника - соответствующего избыточного кода

Физический уровень включает три элемента:

-уровень согласования (reconciliation sublayer) (Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI, смог работать с физическим уровнем через интерфейс MII)

-независимый от среды интерфейс (Media Independent Interface, Mil);

-устройство физического уровня (Physical layer device, PHY).

--подуровня логического кодирование данных, преобразующего поступающие от уровня MAC байты в символы кода 4В/5В или 8В/6Т (оба кода используются в технологии Fast Ethernet);

--подуровней физического присоединения и подуровня зависимости от физической среды (PMD), которые обеспечивают формирование сигналов в соответствии с методом физического кодирования, например NRZI или MLT-3;

--подуровня автопереговоров, который позволяет двум взаимодействующим портам автоматически выбрать наиболее эффективный режим работы, например, полудуплексный или полнодуплексный (этот подуровень является факультативным).



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 790; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.81.94 (0.008 с.)