Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие статистического показателя. Формы выражения и виды статистических показателейСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Статистический показатель - объективная количественная характеристика (мера) общественного явления или процесса 8 конкретных условиях места и времени. Каждый такой показатель имеет социально-экономическое содержание. Формы выражения: 1) общее число единиц совокупности; 2) общая сумма значений количественного признака единиц совокупности; 3) средняя величина признака; 4) величина данного признака по отношению к величине другого. Численное значение статистического показателя, выраженное в единицах измерения, называется его величиной. Различают показатели экономического и социального развития общества: плановые (прогнозные) и отчетные (статистические). Плановые показатели определенные конкретные значения показателей, достижение которых прогнозируется в будущих периодах. Отчетные показатели - сложившиеся условия экономического и социального развития, достигнутый уровень за определенный период. Статистические показатели условно подразделяют на первичные (объемные, количественные, экстенсивные) и вторичные (производные, качественные, интенсивные). Первичные характеризуют общее число единиц совокупности либо сумму значений какого-то их признака. Вторичные, производные показатели выражаются средними и относительными величинами. Показатели, характеризующие размер сложного комплекса социально-экономических явлений и процессов, называют синтетическими. В зависимости от применяемых единиц измерения различают показатели: натуральные, стоимостные и трудовые. В зависимости от сферы применения различают показатели, исчисленные на региональном, отраслевом уровнях и т. д. По точности отражаемого явления различают ожидаемые, предварительные и окончательные величины показателей. По отношению к изучаемому свойству различают прямые и обратные показатели. Величина прямых показателей увеличивается с увеличением исследуемого явления, обратных показателей уменьшается с увеличением исследуемого явления. В зависимости от объема и содержания объекта статистического изучения различают индивидуальные (характеризующие отдельные единицы совокупности) и сводные (обобщающие) показатели. Особенности обобщающих показателей: 1)дают сводную характеристику совокупностям единиц изучаемых общественных явлений; 2) выражают существующие между явлениями связи, зависимости; характеризуют происходящие в явлениях изменения, складывающиеся закономерности их развития и т. д. Аналитические показатели характеризуют статистическую совокупность. К ним относят: 1) средние величины; 2) показатели вариации; 3) показатели связи признаков; 4) показатели структуры и характера распределения; 5) показатели динамики; 6) показатели колеблемости; 7) показатели точности и надежности; 8) показатели точности и надежности прогнозов. Система статистических показателей - совокупность статистических показателей, отражающих различные количественные аспекты и взаимосвязи изучаемых явлений и процессов. Абсолютные величины. Первичная статистическая информация выражается прежде всего в виде абсолютных показателей, которые являются количественной базой всех форм учета. Абсолютные показатели характеризуют итоговую численность единиц совокупности или ее частей, размеры (объемы, уровни) изучаемых явлений и процессов, выражают временные характеристики. Абсолютные показатели могут быть только именованными числами, где единица измерения выражается в конкретных цифрах. В зависимости от сущности исследуемого явления и поставленных задач единицы измерения могут быть натуральными (физические меры массы, длины, объема), условно-натуральными (например, молочные продукты с разным содержанием сливочной основы, мыло с разным содержанием жирных кислот и т.д.), стоимостными (денежное выражение) и трудовыми (затраты труда, трудоемкость технологических операций в человеко-днях, человеко-часах). Вся совокупность абсолютных величин включает как индивидуальные показатели (характеризуют значения отдельных единиц совокупности), так и суммарные показатели (характеризуют итоговое значение нескольких единиц совокупности или итоговое значение существенного признака по той или иной части совокупности). Абсолютные показатели следует также подразделить на моментные и интервальные.
Относительные величины — это отвлеченные статистические величины, выражающие количественное соотношение двух величин. Относительные величины измеряются в коэффициентах, процентах, промилях, комплексных единицах. Видыотносительныхвеличин:
ОВД =(У1 /У0 )х100%. Относительные величины динамики характеризуют изменение явления во времени. В статистике эти показатели называются темпами роста; 2) относительные величины выполнения плана- ОВВП =(У1 /Уплан)х 100%. Эта относительная величина показывает степень выполнения плана в процентах; 3) относительная величина выполнения планового задания ОВПЗ=(Уплан /У0)х 100%. Показывает, на сколько процентов плановое задание выше (ниже) фактически достигнутого в базисном периоде.Эту величину называют плановым темпом роста; 4) относительная величина структуры 7) относительная величина сравнения — это отношение одноименных величин, характеризующих разные объекты изучения за один и тот же период. Показывает, во сколько разчислитель больше (меньше) знаменателя.
27. Средняя арифметическая,способы ее расчета. Средняя гармоническая.
где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности). Средняя арифметическая взвешенная имеет следующий вид:
где f - количество величин с одинаковым значением X (частота). Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X остутствует нижнияя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X. Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Б) Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:
Например, автомобиль ехал из пункта А в пункт Б со скоростью 90 км/ч, а обратно - со скоростью 110 км/ч. Для определения средней скорости применим формулу средней гармонической простой, так как в примере дано расстояние w1=w2 (расстояние из пункта А в пункт Б такое, же как и из Б в А), которое равно произведению скорости (X) на время (f). Средняя скорость = (1+1)/(1/90+1/110) = 99 км/ч. Средняя геометрическая и средняя хронологическая. А) Средняя геометрическая применяется при определении средних относительных изменений. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.
28. Мода и медиана:понятие,принципы расчета и графического определния.
где Мо – мода; ХНМо – нижняя граница модального интервала; hМо – размах модального интервала (разность между его верхней и нижней границей); fМо – частота модальноого интервала; Б) Статистическая медиана – это значение величины X, которое делит упорядоченную по возрастанию или убыванию статистическую совокупность на 2 равных по численности части. В итоге у одной половины значение больше медианы, а у другой - меньше медианы. Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:
где Ме – медиана; ХНМе – нижняя граница медианного интервала; hМе – размах медианного интервала (разность между его верхней и нижней границей); fМе – частота медианного интервала; fМе-1 – сумма частот интервалов, предшествующих медианному. 29. Понятие вариации, ее значение. Вариацию можно определить как количественное различие значений одного и того же признака у отдельных единиц совокупности. К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.
|
||
|
Последнее изменение этой страницы: 2016-04-20; просмотров: 2446; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.214 (0.013 с.) |