Вопрос 45. Проводники. Классификация проводниковых материалов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос 45. Проводники. Классификация проводниковых материалов.



Проводниками называются вещества, внутри которых в случае электростатического равновесия электрическое поле равно нулю, т.е. некомпенсированные заряды проводников локализуются в бесконечно тонком поверхностном слое, а если электрическое поле отлично от нуля, то в проводнике возникает электрический ток.

Проводниковые свойства проявляют как твердые тела, так и жидкости, а при соответствующих условиях и газы.

В электротехнике из твердых проводников наиболее широко используются металлы и их сплавы, различные модификации проводящего углерода и композиции на их основе.

Металлические проводниковые материалы подразделяются на материалы высокой проводимости и сплавы высокого сопротивления. Металлы высокой проводимости используются в тех случаях, когда необходимо обеспечить минимальные потери передаваемой по ним электрической энергии, а сплавы высокого сопротивления, наоборот, в тех случаях, когда необходима трансформация электрической энергии в тепловую.

К жидким проводникам относятся расплавы и электролиты. Если при прохождении тока через жидкие проводники на электродах не происходит выделение продуктов электролиза, то они относятся к проводникам первого рода. Расплавы ионных кристаллов и электролиты относятся к проводникам второго рода, так как при прохождении через них тока происходит перенос вещества, а на электродах выделяются продукты электролиза.

Газы и парообразные вещества становятся проводниками лишь в определенных диапазонах значений давления, температуры и напряженности электрического поля. Близка к газам по своему агрегатному состоянию особая проводящая среда — плазма.

К особой группе проводящих материалов относятся сверхпроводники.

Современная теория проводников основывается на постулатах квантовой механики. В рамках этой теории предполагается, что при отсутствии внешних воздействий (электрические и магнитные поля, градиент температуры) система подвижных электрических зарядов в проводниках описывается равновесной функцией распределения. Реакция на любое внешнее воздействие, нарушающее равновесное состояние подвижных зарядов, может быть описана с помощью неравновесной функции распределения, конкретный вид которой зависит от типа воздействия и определяется на основе решения кинетического уравнения Больцмана. Количественная связь между внешним воздействием и реакцией на него подвижных носителей заряда описывается с помощью кинетических коэффициентов, из которых наиболее важную практическую роль играют коэффициент электрической проводимости (выражает связь между напряженностью электрического поля в проводнике и плотностью тока) и коэффициент тепловой проводимости (выражает связь между разностью температур на единичной длине проводника и тепловым потоком).

При наличии градиентов температуры и потенциала в одном или нескольких соединенных проводниках возникает ряд термоэлектрических эффектов. Самые важные из них — эффекты Зеебека, Пельтье и Томсона. Если градиент температуры вдоль проводника не равен нулю, то на его концах появляется разность потенциалов, называемая термоэлектрической разностью потенциалов, или термоэлектродвижущей силой. При разности температур в 1 К эта разность потенциалов называется удельной (дифференциальной) термоэлектродвижущей силой. В разомкнутой цепи из нескольких разнородных проводников, находащихся при одинаковой температуре, появляется контактная разность потенциалов, равная алгебраической сумме разностей работ выхода электронов из проводников. При замыкании такой цепи ток не возникает, так как контактные разности потенциалов компенсируют друг друга. Если же поддерживать контакты при разных температурах, возникает отличная от нуля термоэлектродвижущая сила, называемая (при разности температур в 1 К) относительной удельной термоэлектродвижущей силой. По имени физика, изучавшего это явление, оно получило название эффекта Зеебека. Этот эффект, положенный в основу работы промышленных термопар, наиболее изучен. Эффект Пельтье состоит в выделении обратимого тепла на контакте двух различных проводников, когда через контакт проходит ток. Эффект Томсона состоит в выделении обратимой теплоты, когда в проводнике протекает ток при наличии градиента температуры.

 

 

В современной теории электропроводности показано, что в идеальной кристаллической решетке электрический или тепловой поток, однажды возникнув, поддерживался бы бесконечно долго, т.е. делокализованные электроны создавали бы бесконечную проводимость, а время релаксации (среднее время свободного пробега электронов) оказалось бы бесконечным. Тот факт, что удельная электрическая проводимость конечна, обусловлен нерегулярностями решетки. Эти нерегулярности делятся на две основные категории. Одни связаны с тепловыми колебаниями, другие являются статистическими. Тепловые колебания решетки нарушают идеальную периодичность кристаллов. Искажения решетки рассеивают электроны, ограничивая длину свободного пробега конечным значением. С уменьшением температуры интенсивность рассеивания уменьшается, и так как ограничения, налагаемые статистикой Ферми, препятствуют рассеянию на нулевых колебаниях, то в области температур, близких к абсолютному нулю, проводимость ограничивается статическими дефектами. Обычно существует целый ряд статических дефектов. Вакансии, междуузельные атомы и примеси замещения составляют группу точечных дефектов. Дислокации являются линейными дефектами. Существуют и двумерные нерегулярности, такие как дефекты упаковки и границы двойников и кристаллитов.

 

В итоге теория предсказывает, а эксперимент подтверждает, что в области низких температур (меньших температуры Дебая Θ) удельная электропроводность γ пропорциональна T-5, а при T>Θ γ ~ T-1, где T — температура перехода.

В практике проведения электротехнических расчетов часто используется не удельная проводимость, а величина, ей обратная, ρ(Ом·м). Учитывая это, ρ~Т при T>Θ. Для большинства металлов температура Дебая лежит в области от 100 до 400 К.

 



Поделиться:


Последнее изменение этой страницы: 2021-11-27; просмотров: 115; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.100.42 (0.005 с.)