Основные сведения из теплотехники и физики 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные сведения из теплотехники и физики



Физическое тело может иметь в твердом, жидком или газообразном состоянии. Твердые: сохраняют форму и объем, имеют кристаллическую решетку. Молекулы колеблются около положения равновесия. Большие силы притяжения между молекулами.

Жидкие: сохраняют объем, но не имеют постоянной формы, принимают форму сосуда, в который помещены, несжимаемы. Силы притяжения слабые, молекулы ведут "скачкообразный" образ жизни, поэтому жидкости текучи.

Газы: не имеют формы и объема (занимают весь предоставленный им объем), притяжение отсутствует. Молекулы беспорядочно движутся.

Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности. О вреде порно: мифы и реальность Чем опасна бессонница и другие нарушения сна Интимная близость: что нельзя делать? Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, средняя скорость движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.

Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими.

Химическое строение твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.

Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы жидкого вещества свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле. Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.

Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления. Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости. Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.

Теплотехника - это наука изучающая методы получения, преобразования, передачи и использования теплоты. Тепловая энергия получается при сжигании органических веществ, называемых топливом.

Рабочим телом называется теплоноситель, с помощью которого про­исходит превращение тепловой энергии в механическую, т. е. совершают работу (например, пар в паровом насосе).

В котельной теплоносителем (рабочим телом) является горячая вода и водяной пар с температурой до 150°С или водяной пар с температурой до 250°С. Для отопления жилых и обще­ственных зданий используется горячая вода, это связано, с санитарно-гигиеническими условиями, возможностью легкого изменения ее темпера­туры в зависимости от температуры наружного воздуха. Вода обладает значительной плотностью по сравнению с паром, что позволяет передавать на большие расстояния значительное количество тепла при небольшом объеме теплоносителя. В систему отопления зданий вода подается с тем­пературой не выше 95°С во избежание пригорания пыли на приборах ото­пления и ожогов от систем отопления. Пар используется для отопления промышленных зданий и в производ-ственно-технологических системах.

Котельная - комплекс, связанных тепловых энергоустановок предназна-ченных для выработки теплоты.

Котельная установка – это котельный агрегат и вспомогательное оборудование.

Котельный агрегат -котел(паровой или водогрейный) с экономайзером.

Вспомогательное оборудование - дымосос, вентилятор, питательный насос, топливное хозяйство (мазутное хозяйство или газовое) ХВП и КИПиА.

Котельные делятся на:

1. Отопительные - вырабатывающие тепло для отопления, вентиляции
и горячего водоснабжения жилых и общественных зданий, а также для
промышленных и коммунальных предприятий.

2. Отопительно-производственные - вырабатывающие тепло для отоп­ления, вентиляции и горячего водоснабжения, а также для технологических целей.

3. Производственные - вырабатывающие тепло только для технологических целей.

Технологический процесс производства пара: топливо при помощи горелочных устройств поступает в топку котла где сгорает. Воздух необходимый для горения топлива подается в топку дутьевым вентилятором, образовавшиеся дымовые газы отдав часть своего тепла поверхностям нагрева, расположенным в топку (радиоционным) поступают на конвективные поверхности нагрева, охлаждаются и дымососом удаляются в атмосферу газозаборником в дымовую трубу.

Поверхности нагрева в котле- стенки труб. Внутри труб движется вода, снаружи трубы омываются дымовые газами. Через стенки труб происходит теплообмен, газы отдают тепло воде. В верхнем барабане вода кипит и получается насыщенный пар между котлом и дымососом установлен водяной экономайзер (теплообменник, для использования тепла в дымовых газах. Поверхности нагрева называют еще хвостовыми. Вода для питания котлов специально готовится ХВП и подается в верхний барабан питательным насосом. Котельная, работающая на жидком топливе, имеет специальное мазутное хозяйство.

Параметры рабочего тела

Теплоноситель, получая или отдавая тепловую энергию, изменяет свое состояние.

Например: Вода в паровом котле нагревается, превращается в пар. ко­торый имеет определенную температуру и давление. Пар поступает в па­роводяной подогреватель, сам охлаждается, превращается в конденсант Температура нагреваемой воды увеличивается, температура пара и конден­сата понижа-ется. Основными параметрами рабочего тела являются температура, давление, удельный объем, плотность.

1. Температура - это степень нагретости тела, определяет направление са­мопроизвольной передачи тепла от более нагретого к менее нагретому те­лу (мера средней кинетической энергии молекул вещества).

Передача тепла будет иметь место до того момента пока температуры не станут равными, т. е. наступит температурное равновесие. Температура измеряется в градусах.

2. Давление - эта сила, действующая перпендикулярно на единицу площади поверхности тела. Давление силы, равной 1 Н, равномерно распределенное на поверх­ности 1м2принято за единицу давления и равно 1Па (Н/м2) в системе СИ.

Атмосферное давление - среднее давление атмосферного воздуха на уровне моря при t° = 0°С и нормальном атмосферном Р =760 мм. рт. ст.

Избыточное давление - давление выше атмосферного (в замкнутом объеме).В котельных под избыточным давлением находятся вода, пар в котлах и трубопроводах. РИЗб. измеряется приборами манометрами.

Разрежение - давление в замкнутых объемах меньше атмосферного (вакуум). Топки и дымоходы котлов находятся под разрежением. Разрежение измеряется приборами тягомерами.

Абсолютное давление - избыточное давление или разрежение с уче­том атмосферного давления.

3. Плотность - отношение массы вещества к его объему.
В практике применяется относительная плотность – отношение плотности данного газа к плотности стандартного вещества (воздуха)при нормальных условиях (t° = 0°С: 760 мм. рт.ст.)

4. Удельный объем - объем занимаемый единицей массы вещества при 0°С и атмосферном давлении 760 мм. рт.ст.

5.   Теплота. Теплота - энергия, которая может передаваться от более нагретого те­ла к менее нагретому при соприкосновении или излучением. Перенос теплоты от твердого тела (стенки) к обтекающей его жидкости или газу называется теплопередачей.

В системе СИ единицей измерения теплоты и энергии является Джоуль(Дж). Внесистемная единица измерения теплоты - калория (кал.).

1 ккал. = 1000 кал. 1 Мкал= 106кал 1 Гкал. = 109кал

О кипении воды и парообразовании

Если жидкость получает теплоту, то она будет нагреваться и через некоторое время начнет кипеть. По наблюдениям этот про­цесс сопровождается образованием в объеме жидкости пузырьков насыщенного пара. С повышением температуры их количество на стенках сосуда возрастает, а размеры уве­личиваются. При определенной температуре давление пара в пузырьках становится рав­ным давлению в жидкости, и они под дей­ствием силы Архимеда начинают всплывать. Когда такой пузырек достигает поверхности жидкости, он лопается и выбрасывает пар наружу.

· Кипение — это внут­реннее парообразование, которое происходит во всем объеме жидкости при температуре, когда давление насыщенного пара равно дав­лению в жидкости.

· Установлено, что при кипении темпе­ратура жидкости остается постоянной — при достижении температуры кипения все пре­доставленное количество теплоты идет на парообразование. Если жидкость не получает теплоту, кипение прекратится, поскольку не будет поступать энергия для внутреннего парообразования.

· Кипение осуществляется при температуре, когда давление насыщенного пара в пузырьках равно давлению в жидкости.

Рис. 1.   Зависимость температуры ки­пения воды от давления

 

· Каждое вещество имеет собственную тем­пературу кипения. Очевидно, что ее значение определяется давлением насыщенного пара при данной температуре, поскольку кипение наступает тогда, когда давление насыщенного пара уравнивается с давле­нием в жидкости. Поэтому температура кипения жидкостей зависит от внешнего давления — чем оно выше, тем выше долж­на быть температура кипения, и наоборот. Это подтверждается на практике. Так, в паровых котлах, где давление может пре­вышать 1,5 • 106 Па (15 атм), вода не кипит даже при 200 °C; на высокогорье, где давле­ние намного меньше, чем нормальное ат­мосферное, температура кипения воды бу­дет ниже 100 °C. Например, на вершине Говерлы (2062 м) вода будет кипеть при 90 °C, а на Эвересте (8848 м) температура кипения воды будет менее 70 °C.

· При нормальном давлении жид­кий аммиак кипит при -33 °C, вода — при 100 °C, ртуть — при 357 °C.

· Это свойство жидкостей широко исполь­зуют в разных технологических процессах. Например, в процессе нефтепереработки для разъединения нефтепродуктов — бензина, ма­зута и масел, имеющих разную температуру кипения; при сахароварении (благодаря по­ниженному давлению сироп кипит при низкой температуре, и поэтому сахар не пригорает).

· Таким образом, все жидкости имеют по­стоянную температуру кипения, которая за­висит от рода вещества и внешнего дав­ления. Чтобы кипение продолжалось, не­обходимо жидкость нагреть до температуры кипения и продолжать нагревать ее, предо­ставляя количество теплоты, необходимое для парообразования.

  Кипе́ние — процесс интенсивного парообразования, который происходит в жидкости, как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения фаз, то есть на стенках сосуда образуются пузырьки, которые содержат воздух и насыщенный пар. Кипение, как и испарение, является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой температуре и давлении. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения. Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых веществ. Кипение является фазовым переходом первого рода. Кипение происходит гораздо более интенсивно, чем испарение с поверхности, из-за присутствия очагов парообразования, обусловленных как более высокой температурой достигаемой в процессе кипения, так и наличием примесей[1].

 



Поделиться:


Последнее изменение этой страницы: 2021-11-27; просмотров: 383; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.157.186 (0.018 с.)