Потребность в белках при занятиях спортом 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Потребность в белках при занятиях спортом



 

Вопрос о потребности в белковом питании спортсменов дискутируется более 100 лет, а среди атлетов еще с греческих олимпийских игр. Белки составляют около 15 % массы тела. Человеческий организм может синтезировать белки из аминокислот. Часть аминокислот являются незаменимыми (гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин), их надо потреблять с пищей. Содержатся они в белках животного происхождения (яйца, рыба, мясо, молоко и молочные продукты) или в комбинации следующих продуктов: кукуруза, горох и бобы, хлеб и чечевица.

Белок пищи усваивается в виде аминокислот. Запас аминокислот крови используется в строительстве структур тела вместе с углеводородами, поэтому при недостатке в пище углеводородов можно наблюдать деградацию мышечной ткани
[Anderson, 1990]. Поступление белка с пищей должно составлять у спортсменов высокой квалификации 1,3–2,0 г/кг/день, что составляет 125–250 % рекомендуемой нормы для неспортсменов.

 

 

Жиры в спортивной тренировке

 

Напряженная мышечная деятельность вызывает усиление липолиза в адипозной ткани за счет бета-адренергического повышения липазной активности [Wahrenberg et. al., 1987, 1991].

Лактат снижает использование СЖК за счет усиления неэстерификации, при отсутствии влияния на липолиз [Issekutz et al., 1962; 1967; 1978; 1993; 1994].

Транспорт СЖК в плазме крови выполняется на (99,9 %) альбумином. Он имеет 10 участков для связи со СЖК.
[Spector et al., 1971].

В мышечные волокна СЖК транспортируются активно и при росте активации мышечных волокон транспорт ускоряется независимо от концентрации СЖК в крови [Turcotte et. al., 1991, 1992, 1994]. Предполагается, что в цитоплазме (саркоплазме) имеются специфические белки переносчики СЖК [Fournier et al., 1983].

Внутриклеточный метаболизм СЖК зависит от интенсивности физического упражнения. Показателем такой зависимости является дыхательный коэффициент (ДК). При мощности 30 % МПК происходило одновременное увеличение в плазме СЖК и потребления меченного олеата [Ahlborg etal., 1984]. Замечено, что СЖК могут активно использоваться только параллельно с углеводами [Mogenson et al., 1987], поэтому снижение концентрации гликогена в мышечных волокнах сопровождается снижением окислительного фосфорилирования СЖК. Главным источником СЖК (ТГ-гранулы) тригицериновые гранулы (капельки жира), а экзогенные СЖК должны сначала должны попасть в ТГ-гранулы. Прямой путь окисления СЖК возможен, однако его роль как энергоисточника несущественнен [Hagenfeld et al., 1988]. При выполнении продолжительной мышечной работы, например, при разгибании колена одной ноги фактическое поступление плазматических ТГ в работающие мышцы оказалось минимальным [Havel et al., 1963, 1967; Turcotte et al., 1992].

Таким образом, можно предположить, что основным источником окисления СЖК при выполнении мышечной работы низкой интенсивности являются внутримышечные запасы триглицеридов.

В горнолыжном спорте жир как источник энергообеспечения используется только в состоянии покоя.

 

 

Витамины

 

Водорастворимые витамины: тиамин, рибофлавин, витамин В1, В6, никотин, пантотеновая кислота, биотин и витамин С участвуют в митохондриальном энергетическом метаболизме. Фолиолевая кислота и В-12 участвуют в синтезе ДНК и формировании костного мозга, продукции красных кровяных клеток (эритроцитов). Витамин В-12 также участвует в митохондриальном метаболизме.

Жирорастворимые витамины А, Д, К, Е выполняют важные антиоксидантные функции. Защищают мышечную ткань от чрезмерного разрушения при накоплении больших концентраций молочной кислоты [van Erp-Baart et al., 1989].

 

 

6.5. Минералы как пищевые добавки в подготовке спортсменов

 

Минеральные пищевые добавки способствуют выходу энергии, уменьшают утомление, поддерживают прочность костной ткани, участвуют как ко-факторы во многих ферментах.

Минеральные пищевые добавки можно разделить на макроминералы — вещества, которых содержатся в теле не менее 0,01 % от общей массы тела и микроминералы, которых в организме содержатся следы или менее чем 0,001 % от общей массы тела. К макроминералам относят: кальций, магний, натрий, калий, сера, хлор. К микроминералам относят: железо, цинк, медь, селен, арсений и кобальт [Hunt, Groff, 1990].

Приведем данные об особенностях физиологической значимости некоторых минералов.

Кальций необходим для строительства костной ткани, участвует в процессах сокращения мышечной ткани. При адекватном содержании кальция в пище у спортсменов не возникает проблем с плотностью костной ткани [Lane et al., 1986; Dalsky et al., 1988; Myburgh et al., 1990].

Магний участвует как ко-фактор в ферментах энергетического метаболизма, поддерживает электрический потенциал в мышечных и нервных клетках, содержится в костных тканях. После марафонского бега или значительных мышечных повреждений после физических упражнений происходит снижение концентрации магния в плазме крови [Conn et al., 1986; Rose et al., 1970]. Предполагается, что магний может уходить с потом, с мочой, перераспределяться между тканями [McDonald, Keen, 1988].

Фосфор входит в состав костей, АТФ, нуклеотидов, ферментов. Отмечено, что у бегунов — марафонцев, попавших в состояние коллапса концентрация фосфора в плазме крови оказывалась очень низкой [Howerver, Dale et al., 1986]. Поддержание высокой концентрации фосфора в плазме крови способствует поддержанию высокой концентрации АТФ, и КрФ в клетках.

Селен действует как антиоксидант в союзе с витамином Е уменьшает перекисное окисление клеточных мембран при выполнении напряженных упражнений [Kanter et al., 1988; Maughan et al., 1989].

Железо необходимый элемент гемоглобина и миоглобина, которые участвуют в транспорте кислорода. Недостаток железа в плазме крови не может сказаться на спортивной работоспособности, но при длительном дефиците железа в пище и в крови развертывается анемия [Haymes, 1987].

 

 

Адаптогены (Эргогены)

 

Креатин

Креатин (Кр) одно из наиболее важных органических веществ, участвующих в энергообеспечении деятельности и буферировании закисления клеток. Фермент — креатинфосфокиназа участвует в распаде креатинфосфата (КрФ) до креатина (Кр) и неорганического фосфата (Ф), при этом выделяется энергия, которая может использоваться для синтеза АТФ из АДФ и Ф. Следовательно, креатин поддерживает деятельность клеток и, в частности, мышечное сокращение.

Креатин синтезируется в печени, почках и поджелудочной железе из аргинина и глицина. Было также показано, что кроме эндогенного образования креатина происходит его приход с питанием, например, при употреблении рыбы, мяса или пищевых добавок, содержащих Кр.

Прием 20–30 г Кр в день в течении нескольких дней может привести к увеличению общего количества креатина на 20 %, в том числе и КрФ. Было установлено, что синтетический аналог креатина подавляет синтез креатина по системе обратной связи. Запас креатина должен пополняться с пищей в количестве 2 г в день, чтобы компенсировать потерю его в виде креатинина с мочой. Ingwa L. et. al (1988) предложили гипотезу о влиянии креатина, по механизму обратной связи, на рост мышечной ткани. Было показано, что креатин стимулирует включение меченного лейцина в тяжелые цепи миозина и актина скелетных мышц и сердца.

НМВ

В последнее время в продаже появилась новая пищевая добавка, которая получила название НМВ. Полное научное название этой пищевой добавки beta-hydroxy beta-methylbutyrate. Она начала рекламироваться с 1995 г. Рекомендовалась как биокорректор питания, минимизирующий повреждения в мышечных волокнах, увеличивающий жировой обмен, усиливающий деятельность митохондрий и иммуннокомпетентных клеток.

Ученые считают (S. Nissen, 1994–1997), что НМВ является промежуточным продуктом распада аминокислоты — лейцина. Эта аминокислота имеет структуру с разветвленными звеньями молекул, является незаменимой, т. е. не может синтезироваться в человеческом орнанизме. Лейцин должен регулярно поступать в организм с пищей. Лейцин преобразуется в нашем теле сначала в неустойчивую молекулу KIC (alfa-ketoisocaproate acid), а затем в НМВ. Только 3–4 % лейцина превращается в теле человека в НМВ, поэтому для получения физиологически значимой дозы НМВ (1–3 г/день) необходимо съесть 2–3 кг мяса. Особенно много НМБ в рыбе, однако нельзя есть килограммами рыбу каждый день. Поэтому для спортсменов очень важно использовать в питании пищевые добавки, которые в концентрированном виде позволяют вводить с пищей необходимое количество биокорректоров.

В настоящее время механизм действия НМВ неясен, однако, S. Nissen полагает, что он участвует в образовании холестерина. Холестерин важная составляющая при строительстве мембран клетки и ее органелл. Активное строительство мембран с использованием холестерина может приводить к снижению в крови концентрации холестерина и (ЛПНП) липопротеинов низкой плотности (из них образуется при распаде холестерин и аминокислоты). ЛПНП при распаде в фибропластах артерий (клетки стенок сосудов) образуют холестерин, который может накапливаться и в конечном итоге приводить к атеросклерозу. Следовательно, НМВ снижает концентрацию ЛПНП в крови, уменьшает вероятность заболевавния атерослерозом. Если принять к сведению концепцию о роли НМВ в строительстве мембран клеток, в том числе митохондрий и лизосом, то можно ожидать роста силы мышц (вместе с миофибриллами должны разрастаться мембраны саркоплазматического ретикулума), повышения аэробных возможностей (мембраны митохондрий становятся менее зависимыми от больших концентраций ионов водорода), снижения скорости катаболизма белков (упрочение мембран лизосом — пищеварительного аппарата клеток, снижает скорость выхода ферментов разрушающих белки в саркоплазму).

Эти теоретические предположения получают экспериментальное подтверждение.

В исследованиях на животных и людях было показано, НМВ может уменьшать разрушение мышечного протеина и способствовать росту силы и размера мышц. Например, S. Nissen et al. (1996) изучал 41 культуриста, которые были разделены на три группы с приемом 0, 1,5 и 3 г/день НМВ. Дополнительно испытуемые были разделены на тех кто получал с пищей 117 г белка/день и 175 г/день. Тренировочная программа включала упражнения с тяжестями три раза в неделю по 3,5 часа. Эксперимент длился три недели. Результат этого эксперимента показал, что НМВ работает. В группе, не принимавшей НМВ, тощая масса тела выросла на 0,4 кг, во второй группе, с потреблением 0,8 г/день, прибавка составила 1,3 кг, в третьей группе — 1,3 кг (НМВ = 3 г/кг). Сила выросла в первой группе на 8 %, во второй на 13 % (1,5 г НМВ/день), в третьей на 18 % (3 г НМВ/день).

В ходе исследования было показано, что в крови у лиц, принимавших НМВ, существенно снижается концентрация веществ, которые появляются при разрушении внутренних структур клеток. Такие вещества называются маркерами катаболизма (3-метилгистедин, креатикиназа, лактатдегидрогеназа и др.).

Рост силы и скорости бега на 13 % был обнаружен у игроков в американский футбол (A. Almada et al., 1997), которые принимали НМБ (3 г/день) и креатин моногидрат и выполняли по 5 часов в неделю силовую работу и 3 часа в неделю спринтерские упражнения в течение 28 дней.

В исследовании M. D. Vukovich, G. D. Adams восемь велосипедистов по две недели принимали разные препараты: НМВ 3 г/день или лейцин 3 г/день, или плацебо 3 г/день. В начале и в конце каждого периода проводились обследования. Измеряли МПК и максимум накопления лактата в крови. При приеме НМВ наблюдалось увеличение МПК на 0,18 л/мин, в остальных случаях различия были недостоверны. Изменение концентрации лактата было статистически неразличимо.

Цитрат-натрия

Цитрат-натрия создает эргогенический потенциал благодаря увеличению рН градиента между кровью и мышцами. Цитрат-натрия (Na3C6H5O7 H20) также должен приводить к эргогеническому эффекту, поскольку цитрат может взаимодействовать с ионами водорода. В работе G. Cox, D. Jenkins (1994) было показано, что прием за 90 мин. до упражнения цитрата-натрия (0,5 г/кг) привело к алкалозу до упражнения и увеличению концентрации лактата в крови после упражнения (60 с). Однако объем выполненной работы статистически значимо не изменилось по сравнению с приемом плацебо. Можно предположить, что цитрат может проникать сквозь мембраны мышечных волокон и вызывать ингибирующее действие на ход гликолиза. В горнолыжном спорте перед сложными и длительными тренировочными заданиями (2-х мин. спуск с максимальной интенсивностью) следует принимать цитрат-натрия для снижения степени закисления мышц.

Бикарбонат натрия

Увеличение концентрации ионов водорода (Н) в мышечных клетках во время выполнения физических упражнений приводит к утомлению. Поэтому для снижения закисления мышечных клеток и крови ученые пробовали использовать щелочи. Прием пищевой соды (бикарбоната натрия — NaHCO2) в крахмальных обкладках из расчета 0,3 г на 1 кг массы тела (запивались двумя стаканами теплой воды) за 3 часа до эксперимента показал следующее. У десяти испытуемых в состоянии покоя после прохождения 60 мин. рН крови стабилизировалось на уровне 7,444–7,700. Выполнение упражнения с мощностью 130 % МПК (380–400 Вт) продолжалось 2–5 мин. в контрольном опыте, а с применением бикарбоната продолжительность выполнения упражнения увеличилась на 21,6 %. Сразу после работы до отказа концентрации лактата в мышцах во всех случаях оказалась статистически неразличимые. В крови концентрация лактата была максимальной на 5–7 мин. и статистически достоверно больше в экспериментальном случае (15,5 мМ/л против 12,9 мМ/л при б=1,1 мМ/л). Величина рН была систематически выше в случае применения щелочи (7,193 против 7,256 на 7 мин. восстановления, б=0,018).

Таким образом, снижение степени закисления мышц и крови приводит к росту работоспособности спортсменов при выполнении работы на велоэргометре.

Влияние системного рН на образование кетоновых тел и липолиз было выполнено Hood V. L. et. al (1990). На 14 здоровых лицах было показано, что при увеличенном алкалозе (приеме бикарбоната) и вводе меченных ацетаты и гидро-окси-бутирота возрастает общая концентрация кетоновых тел и концентрация НЭЖК и глицерина в крови увеличивается, а при закислении концентрации их увеличиваются. Следовательно, при закислении создаются условия для увеличения потребления жирных кислот, а так как эксперимент проводился ы условиях покоя, то можно предположить, что усиливался синтез жира в клетках тела.

 

 

Источники:

1)  “Контроль и физическая подготовка горнолыжников (методическое пособие)” В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков

2) Селуянов, В.Н. Принципы построения силовой тренировки / Селуянов В.Н., Сарсания С.К. // Юбилейн. сб. тр. учен. РГАФК, посвящ. 80-летию акад. - М., 1998. - Т. 2. - С. 39-49

3) Биохимия сокращения и расслабления мышц: практическое руководство для студентов вузов специальности «Физи- ческая культура» / Л. А. Беляева, О. В. Корытко, Г. А. Медве- дева; М-во образования РБ, Гомельский гос. ун-т им. Ф. Ско- рины. – Гомель: ГГУ им. Ф.Скорины, 2009.- 64 с”

4) http://prosportlab.com/lab/about – сайт научной лаборатории спортивной адаптологии проф. Селуянова.

 



Поделиться:


Последнее изменение этой страницы: 2021-11-27; просмотров: 25; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.184.117 (0.021 с.)