Дифракция света. Дифракционная решетка. Дифракционный спектр, его применение. Понятие голография. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дифракция света. Дифракционная решетка. Дифракционный спектр, его применение. Понятие голография.



Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает 1015 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки. В качестве дифракционной решетки может быть использован кусочек компакт-диска или даже осколок граммофонной пластинки.

Дифракционная решетка

Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. На решетку с помощью коллиматора направляется параллельный пучок исследуемого света. Наблюдение ведется в фокальной плоскости линзы, установленной за решеткой.

Дифракция света на решетке

В каждой точке P на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и распространялись под определенным углом θ к направлению падающей волны. Колебание в точке P является результатом интерференции вторичных волн, приходящих в эту точку от разных щелей. Для того, чтобы в точке P наблюдался интерференционный максимум, разность хода Δ между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн: Δ = d sin θ m = m λ (m = 0, ±1, ±2,...).

 

Здесь d – период решетки, m – целое число, которое называется порядком дифракционного максимума. В тех точках экрана, для которых это условие выполнено, располагаются так называемые главные максимумы дифракционной картины.

В фокальной плоскости линзы расстояние ym от максимума нулевого порядка (m = 0) до максимума m-го порядка при малых углах дифракции равно

 

где F – фокусное расстояние.

Следует обратить внимание на то, что в каждой точке фокальной плоскости линзы происходит интерференция N волн, приходящих в эту точку от N щелей решетки. Это так называемая многоволновая (или «многолучевая») интерференция. Распределение световой энергии в плоскости наблюдения резко отличается от того, которое получается в обычных «двухлучевых» интерференционных схемах. В главные максимумы все волны приходят в фазе, потому амплитуда колебаний возрастает в N раз, а интенсивность в N2 раз по сравнению с колебанием, которое возбуждает волна только от одной щели.

При смещении из главных максимумов интенсивность колебаний быстро спадает. Чтобы N волн погасили друг друга, разность фаз должна измениться на 2π / N, а не на π, как при интерференции двух волн.

При переходе из главного максимума в соседний минимум разность хода Δ = d sin θ должна измениться на λ / N. Из этого условия можно оценить угловую полуширину δθ главных максимумов:

Здесь для простоты полагается, что дифракционные углы достаточно малы. Следовательно,

 

где Nd – полный размер решетки. Это соотношение находится в полном согласии с теорией дифракции в параллельных лучах, согласно которой дифракционная расходимость параллельного пучка лучей равна отношению длины волны λ к поперечному размеру препятствия.

Можно сделать важный вывод: при дифракции света на решетке главные максимумы чрезвычайно узки. Рис. 1 дает представление о том, как меняется острота главных максимумов при увеличении числа щелей решетки.

Рисунок 1. Распределение интенсивности при дифракции монохроматического света на решетках с различным числом щелей. I0 – интенсивность колебаний при дифракции света на одной щели

Как следует из формулы дифракционной решетки, положение главных максимумов (кроме нулевого) зависит от длины волны λ. Поэтому решетка способна разлагать излучение в спектр, то есть она является спектральным прибором. Если на решетку падает немонохроматическое излучение, то в каждом порядке дифракции (т. е. при каждом значении m) возникает спектр исследуемого излучения, причем фиолетовая часть спектра располагается ближе к максимуму нулевого порядка. На рис. 2  изображены спектры различных порядков для белого света. Максимум нулевого порядка остается неокрашенным.

Рисунок 2. Разложение белого света в спектр с помощью дифракционной решетки

С помощью дифракционной решетки можно производить очень точные измерения длины волны. Если период d решетки известен, то определение длины сводится к измерению угла θm, соответствующего направлению на выбранную линию в спектре m -го порядка. На практике обычно используются спектры 1 -го или 2 -го порядков.

Если в спектре исследуемого излучения имеются две спектральные линии с длинами волн λ1 и λ2, то решетка в каждом спектральном порядке (кроме m = 0) может отделить одну волну от другой.

Одной из важнейших характеристик дифракционной решетки является ее разрешающая способность, характеризующая возможность разделения с помощью данной решетки двух близких спектральных линий с длинами волн λ и λ + Δλ. Спектральной разрешающей способностью R называется отношение длины волны λ к минимальному возможному значению Δλ, то есть

 

Разрешающая способность спектральных приборов, и, в частности, дифракционной решетки, также как и предельное разрешение оптических инструментов, создающих изображение объектов (телескоп, микроскоп) определяется волновой природой света. Принято считать, что две близкие линии в спектре m-го порядка различимы, если главный максимум для длины волны λ + Δλ отстоит от главного максимума для длины волны λ не менее, чем на полуширину главного максимума, т. е. на δθ = λ / Nd. По существу, это критерий Релея, примененный к спектральному прибору. Из формулы решетки следует:

где Δθ – угловое расстояние между двумя главными максимумами в спектре m -го порядка для двух близких спектральных линий с разницей длин волн Δλ. Для простоты здесь предполагается, что углы дифракции малы (cos θ ≈ 1). Приравнивая Δθ и δθ, получаем оценку разрешающей силы решетки:

 

Таким образом, предельное разрешение дифракционной решетки зависит только от порядка спектра m и от числа периодов решетки N.

Голография

Голография – метод получения объемного изображения объекта, путем регистрации и последующего восстановления, волн изобретенный английским физиком венгерского происхождения Д. Габором в 1948 г.

    Волны могут быть при этом любые – световые, рентгеновские, корпускулярные, акустические и т.д.

При обычной фотографии фотопластинка регистрирует только интенсивность световой волны. Информация о фазе волны при этом теряется. Таким образом, содержащаяся в фотографии информация об объекте весьма ограничена, например, не можем увидеть то, что было закрыто во время съемки объектом, находящемся на переднем плане, - не можем заглянуть за этот объект.

Схема записи голограммы

Голография позволяет записать на фотопластинку (голограмму) полную информацию (амплитуду и фазу) об объекте и затем восстановить изображение. Для этого необходимо иметь излучение с высокой степенью когерентности, полученное с помощью лазера.

Схема чтения голограммы

Для получения цветного голографического изображения объекта пользуются монохроматическим светом трех основных цветов (например, красным, зеленым и синим), испускаемым одновременно тремя лазерами.

Если голограмму расколоть на несколько кусков, то каждый из них при просвечивании восстанавливает полное изображение, но с меньшей четкостью.


 



Поделиться:


Последнее изменение этой страницы: 2021-11-27; просмотров: 131; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.202.54 (0.008 с.)