Физико-химические свойства крови 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физико-химические свойства крови



Оглавление

 

Система крови.................................................................................................. 4

Основные функции крови................................................................................ 5

Физико-химические свойства крови............................................................... 7

Форменные элементы крови.......................................................................... 14

Эритроциты................................................................................................. 16

Гемоглобин и его соединения.................................................................... 20

Цветовой показатель................................................................................... 23

Гемолиз........................................................................................................ 23

Функции эритроцитов................................................................................. 26

Эритрон. Эритропоэз.................................................................................. 28

Группы крови.............................................................................................. 33

Система резус и другие............................................................................... 39

Лейкоциты...................................................................................................... 42

Характеристика отдельных видов лейкоцитов.......................................... 47

Регуляция лейкопоэза................................................................................. 53

Неспецифическая резистентность и иммунитет........................................ 55

Тромбоциты.................................................................................................... 68

Сиситема гемостаза........................................................................................ 70

Сосудисто-тромбоцитарный гемостаз....................................................... 71

Коагуляционный гемостаз.......................................................................... 76

Регуляция свертывания крови.................................................................... 78

Практические работы..................................................................................... 83

Физиология красной крови......................................................................... 83

Физиология лейкоцитов.............................................................................. 93

Определение СОЭ, группы крови по системе АВО, резус-фактора...... 100

Работа на гематологическом анализаторе Гемолюкс 19......................... 105

СИСТЕМА КРОВИ

 

Система крови является одной из самых динамичных систем организма. Это обусловлено той ролью, которую выполняют в организме как форменные элементы крови, так и плазма. Тем не менее, у интактных животных организмов состав крови достаточно постоянен, что обусловлено четкой координацией процессов кроветворения и кроверазрушения.

В систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особенностями:

- все ее составные части образуются за пределами сосудистого русла,

- межклеточное вещество является жидким,

- основная часть крови находится в постоянном движении.

Кровь животных заключена в систему замкнутых трубок – кровеносных сосудов. Кровь состоит из жидкой части (плазмы, 52-60%) и форменных элементов (эритроцитов,лейкоцитов и тромбоцитов, 40-48%).

Это соотношение получило название гематокритного числа.

 

ОСНОВНЫЕ ФУНКЦИИ КРОВИ

 

Основными функциями крови являются транспортная, защитная и регуляторная. Все три функции крови связаны между собой и неотделимы друг от друга.

Транспортная функция — кровь переносит необходимые для

жизнедеятельности органов и тканей различные вещества, газы и продукты обмена. Транспортная функция осуществляется как плазмой, так и форменными элементами. Многие вещества переносятся в неизмененном виде, другие вступают в нестойкие соединения с различными белками. Благодаря транспорту реализуется и дыхательная функция крови. Кровь осуществляет перенос гормонов, питательных веществ, продуктов обмена, ферментов, пептидов, различных биологически активных соединений (простагландины, лейкотриены, цитомедины и др.), катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма почками и внепочечными путями воды, метаболитов.

Защитные функции крови чрезвычайно разнообразны. С наличиемвкрови лейкоцитов связана специфическая (иммунитет) и неспецифическая (главным образом, фагоцитоз) защита организма. В составе крови содержатся все компоненты так называемой системы комплемента, играющей важную роль как в специфической, так и неспецифической защите. К защитным функциям относятся сохранение циркулирующей крови в жил- ком состоянии и остановка кровотечения (гемостаз) в случае нарушения целости сосудов.

Гуморальная регуляция деятельности организма в первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови сохраняется постоянство внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, поддержание постоянства кислотно-основного состояния, регуляция гемопоэза (кроветворения) и течение других физиологических процессов.

 
 

 

 

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

 

Все форменные элементы крови — эритроциты, лейкоциты и тромбоциты образуются в костном мозге из единой полипотентной, плюрипотентной, стволовой клетки (ПСК). В костном мозге все кроветворные клетки собраны в грозди, окружены фибробластами и эндотелиальными клетками. Созревшие клетки пробивают себе путь среди расщелин, образованных фибробластами и эндотелием, в синусы, откуда поступают в венозную кровь.

Несмотря на то что все клетки крови являются потомками единой, кроветворной клетки, они выполняют различные специфические функции, в то же время общность происхождения наделила их и общими свойствами. Так, все клетки крови, независимо от их специфики, участвуют в транспорте различных веществ, выполняют защитные регуляторные функции.

ЭРИТРОЦИТЫ

 

 

Эритроциты, или красные кровяные клетки, впервые обнаружил в крови лягушки Мальпиги (1661), Левенгук (1673) показал, что они также присутствуют в крови млекопитающих. В крови млекопитающих эритроциты имеют преимущественно форму двояковогнутого диска. Поверхность диска в 1,7 раза больше, чем поверхность тела такого же объема, но сферической формы; при этом диск умеренно изменяется без растяжения мембраны клетки. Максимальная толщина составляет всего 2 мкм. Средняя величина диаметра эритроцита (нормоцита) у взрослого человека равна 7.5 мкм. Особая форма эритроцитов способствует выполнению ими основной функции – переноса дыхательных газов, так как при такой форме диффузионная поверхность увеличивается, а диффузионное расстояние уменьшается. Кроме того, благодаря своей форме эритроциты обладают большой способностью к обратимой деформации при прохождении через узкие изогнутые капилляры. Это значительно улучшает реологические характеристики крови. В обеспечении этих свойств важную роль играет под мембранный цитоскелет эритроцита. По мере старения клеток уменьшается пластичность эритроцитов. Пластичность понижена и у эритроцитов с патологически измененной формой (у сфероцитов и серповидных эритроцитов). 

Распределение эритроцитов по диаметру у здорового человека соответствует кривой нормального распределения или кривой ПрайсДжонса (рис. 1). При нарушении эритропоэзапроисходит сдвиг кривой Прайс-Джонса вправо; речь идет о макроцитозе,т. е. о значительном увеличении числа эритроцитов с диаметром, превышающим 8 мкм. При пернициозной анемии диаметр отдельных эритроцитов (мегалоцитов) иногда превышает 12 мкм. Сдвиг кривой Прайс-Джонса влево (т.е. существенное увеличение числа красных кровяных клеток с диаметром менее 6 мкм) называют микроцитозом. В этом случае в крови обнаруживаются карликовые эритроциты с укороченным сроком жизни; диаметр их может составлять всего 2,2 мкм. Более пологая форма кривой Прайс-Джонса в результате увеличения числа как макроцитов, так и микроцитов характерна для анизоцитоза. Пернициозная анемия и талассемия сопровождаются пойкилоцитозом – состоянием, при котором встречаются эритроциты разной необычной формы. К эритроцитам с характерной патологически измененной формой относятся круглые сфероциты (при сфероцитозе) и серповидные эритроциты (при серповидноклеточной анемии).

 

Рис. 1. Кривая Прайс-Джонса. Распределение эритроцитов по диаметру у здорового человека (красная линия) и у больного пернициозной анемией (черная линия), цит. по Schmidta. Thews (1996).

 

Мембрана эритроцита состоит из билипидного слоя, который пронизан гликофорином, белками каналов. Наряду с тем, что мембрана эритроцита проницаема для катионов Nа и К, она особенно хорошо пропускает О2, СО2, СI- и НСО3-. На стороне, обращенной к цитозолю, располагается молекулярная сеть – подмембранный скелет. Главные компоненты этой сети образованы нитеподобными молекулами спектрина, которые связаны друг с другом анкирином и другими связывающими белками (Band4.1, актин). Подмембранный слой играет важную роль в деформации эритроцитов при прохождении их через узкие капилляры.  

Дефект белка цитоскелета – анкирина приводит к кеглеобразному изменению формы эритроцитов — сфероцитоз. Сфероциты крайне нестабильны — время жизни составляет около 10 дней, вследствие этого возникает анемия.

Размеры эритроцита весьма изменчивы, но в большинстве случаев их диаметр равен 7,5—8,3 мкм, толщина — 2,1 мкм, площадь поверхности — 145 мкм2, объем — 86 мкм3.

В норме число эритроцитов у мужчин равно 4—5*1012/л, или 4 —5 млн в 1 мкл. У женщин число эритроцитов меньше и не превышает 4,5*10

12                                                                                                                                                                                           12

*/л. При беременности число эритроцитов может снижаться до 3,5*10 /л и даже до З,0*1012/л, и это многие исследователи считают нормой.

У человека с массой тела 60 кг общее число эритроцитов равняется 25 триллионам. 

В детском возрасте число эритроцитов постепенно меняется. У новорожденных оно высоко (5,5 млн./мкл крови), что обусловлено перемещением крови из плаценты в кровоток время родов и значительной потерей воды в дальнейшем. В последующие месяцы организм растет, но новые эритроциты не образуются, что обусловливает «спад третьего месяца» (к третьему месяцу жизни число эритроцитов снижается до 3,5 млн./мкл крови). У детей дошкольного возраста число эритроцитов меньше, чем у женщин.

В норме число эритроцитов подвержено незначительным колебаниям. При различных заболеваниях количество эритроцитов может уменьшаться. Подобное состояние носит название «эритропения» и часто сопутствует малокровию или анемии. Увеличение числа эритроцитов обозначается как «эритроцитоз».

Обмен веществ зрелых безъядерных эритроцитов направлен на обеспечение их функции как переносчиков кислорода и диоксида углерода. В связи с этим метаболизм эритроцитов отличается от метаболизма других клеток. Он должен, прежде всего, поддерживать способность эритроцита обратимо связывать кислород, для чего необходимо восстановление иона железа в составе тема. Двухвалентное железо в нем постоянно переходит в трехвалентное вследствие спонтанного окисления и, для того чтобы могло происходить связывание кислорода, Fe3+ должно быть восстановлено в Fe2+.

Предшественники эритроцитов, содержащие ядро, обладают обычным набором ферментов, необходимым как для получения энергии в результате окислительных процессов, так и для синтеза белков. В зрелых же эритроцитах может идти лишь гликолиз, основным субстратом которого служит глюкоза. Главным источником энергии в эритроцитах, как и в других клетках, является АТФ. Это вещество необходимо, в частности, для активного транспорта ионов через мембрану эритроцитов, то есть для поддержания внутриклеточного градиента концентрации ионов. Наряду с синтезом АТФ в процессе гликолиза в эритроцитах происходит также образование восстановителей – НАДН (восстановленный никотинамидадениндинуклеотид) и НАДФН (восстановленный никотинамидадениндинуклеотидфосфат, образующийся в пентозофосфатном цикле). 

 

ГЕМОГЛОБИН И ЕГО СОЕДИНЕНИЯ

 

 

Основные функции эритроцитов обусловлены наличием в их составе особого белка хромопротеида — гемоглобина. Молекулярная масса гемоглобина человека равна 68 800. Гемоглобин состоит из белковой (глобин) и железосодержащей (гем) частей. На 1 молекулу глобина приходится 4 молекулы гема.

В крови здорового человека содержание гемоглобина составляет 120—165 г/л (120—150 г/л для женщин и 130—160 г/л для мужчин). У беременных содержание гемоглобина может понижаться до 110 г/л, что не является патологией.

Основное назначение гемоглобина — транспорт О2 и СО2. Кроме того, гемоглобин обладает буферными свойствами, а также способностью связывать некоторые токсичные вещества.

Гемоглобин человека и различных животных имеет разное строение. Это касается белковой части — глобина, так как гем у всех представителей животного мира имеет одну и ту же структуру. Гем состоит из молекулы порфирина, в центре которой расположен ион Fе2+, способный присоединять О2. Структура белковой части гемоглобина человека неоднородна, благодаря чему белковая часть разделяется на ряд фракций. Большая часть гемоглобина взрослого человека (95—98%) состоит из фракции А (от лат. аdultus — взрослый); от 2 до 3% всего гемоглобина приходится на фракцию А2; наконец, в эритроцитах взрослого человека находится так называемый фетальный гемоглобин (от лат. fetus — плод),

или гемоглобин F, содержание которого в норме подвержено значительным колебаниям, хотя редко превышает 1—2%. Гемоглобины А и А2 обнаруживаются практически во всех эритроцитах, тогда как гемоглобин F присутствует в них не всегда.

Гемоглобин F содержится преимущественно у плода. К моменту рождения ребенка на его долю приходится 70—90%. Гемоглобин F имеет большее сродство к кислороду, чем гемоглобин А, что позволяет тканям плода не испытывать гипоксии, несмотря на относительно низкое напряжение кислорода в его крови. Эта приспособительная реакция объясняется тем, что гемоглобин F труднее вступает в связь с 2,3дифосфоглицериновой кислотой, которая уменьшает способность гемоглобина переходить в оксигемоглобин, а следовательно, и обеспечивать легкую отдачу кислорода тканям.

Гемоглобин обладает способностью образовывать соединения с кислородом, углекислым газом и угарным газом. Гемоглобин, присоединивший О2, носит наименование оксигемоглобина (ННО2,; гемоглобин, отдавший О2,, называется восстановленным, или редуцированным (ННЬ). В артериальной крови преобладает содержание оксигемоглобина, от чего ее цвет приобретает алую окраску. В венозной крови до 35% всего гемоглобина приходится на ННЬ. Кроме того, часть гемоглобина через аминную группу связывается с СО2, образуя карбогемоглобин (ННЬСО2), благодаря чему переносится от 10 до 20% всего транспортируемого кровью СО2.

Гемоглобин способен образовывать довольно прочную связь с СО. Это соединение называется карбоксигемоглобином (ННЬСО). Сродство гемоглобина к СО значительно выше, чем к О2, поэтому гемоглобин, присоединивший СО, неспособен связываться с О2,. Однако при вдыхании чистого О2 резко возрастает скорость распада карбоксигемоглобина, чем пользуются на практике для лечения отравлений СО.

Сильные окислители (ферроцианид, бертолетова соль, перекись, водорода и др.) изменяют заряд от Fе2+ до Fе3+, в результате чего возникает окисленный гемоглобин — прочное соединение гемоглобина с О2,, носящее наименование метгемоглобина. При этом нарушается транспорт О2,, что приводит к тяжелейшим последствиям для человека и даже смерти.

 

ЦВЕТОВОЙ ПОКАЗАТЕЛЬ  

О содержании в эритроцитах гемоглобина судят по так называемому цветовому показателю, или фарб-индексу (Fi, от farb — цвет, index — показатель) — относительной величине, характеризующей насыщение в среднем одного эритроцита гемоглобином. Fi — процентное соотношение гемоглобина и эритроцитов, при этом за 100% (или единиц) гемоглобина условно принимают величину, равную 166,7 г/л, а за 100% эритроцитов — 5*1012 /л. Если у человека содержание гемоглобина и эритроцитов равно 100%, то цветовой показатель равен 1. В норме фарб- индекс колеблется в пределах 0,75—1,0 и очень редко может достигать 1,1. В этом случае эритроциты называются нормохромными. Если цветовой показатель менее 0,7, то такие эритроциты недонасыщены гемоглобином и называются гипохромными. При Fi более 1,1 эритроциты называются гиперхромными. В этом случае объем эритроцита значительно увеличивается, что позволяет ему содержать большую концентрацию гемоглобина. В результате создается ложное впечатление, будто эритроциты перенасыщены гемоглобином. Гипо- и гиперхромия встречаются лишь при анемиях. Определение цветового показателя важно для клинической практики, так как позволяет провести дифференциальный диагноз при анемиях различной этиологии.

 

ГЕМОЛИЗ  

Осмотические свойства. Содержание белков в эритроцитах выше, а низкомолекулярных веществ ниже, чем в плазме. Осмотическое давление, создаваемое высокой внутриклеточной концентрацией белков, в значительной степени компенсируется малой концентрацией низкомолекулярных веществ, поэтому осмотическое давление в эритроцитах лишь немногим выше, чем в плазме: величина его как раз достаточна для обеспечения нормального тургора этих клеток. Мембрана эритроцита проницаема для малых молекул и ионов (для разных в разной степени). Ингибирование активного транспорта ионов (активно переносятся через мембрану Na+ и К+: Nа+ – из клетки, а К+ – в клетку;)

приводит к снижению их трансмембранных концентрационных градиентов. Высокое внутриклеточное содержание белков, которое при этом остается постоянным, перестает компенсироваться, и осмотическое давление в эритроците возрастает. В результате вода начинает поступать в эритроцит; это продолжается до тех пор, пока его мембрана не лопнет и гемоглобин не выйдет в плазму. 

Гемолизом называется разрыв оболочки эритроцитов и выход гемоглобина в плазму, благодаря чему кровь приобретает лаковый цвет. Процесс называется осмотическим гемолизом. Если внеклеточная жидкость лишь умеренно гипотонична, эритроциты набухают и приобретают форму, близкую к сферической (сфероциты). Напротив, в гипертонической среде они теряют воду и сморщиваются (рис. 2).

В искусственных условиях гемолиз эритроцитов может быть вызван помещением их в гипотонический раствор. Для здоровых людей минимальная граница осмотической стойкости соответствует раствору, содержащему 0,42—0,48% NаС1, полный же гемолиз (максимальная граница стойкости) происходит при концентрации 0,30— 0,34% NаС1. При анемиях границы минимальной и максимальной стойкости смещаются в сторону повышения концентрации гипотонического раствора. 

Осмотический гемолиз эритроцитов наступает также в изотонических растворах веществ, легко проникающих через их мембраны (например, в растворе мочевины). Мочевина равномерно распределяется между эритроцитом и внешней средой. Поскольку клеточная мембрана задерживает крупные молекулы внутри эритроцита, осмотическое давление в нем становится больше, чем во внешней среде; разница между внеклеточным и внутриклеточным осмотическим давлением в этом случае будет пропорциональна количеству поглощенной мочевины. В эритроцит начинает поступать вода, что приводит к разрыву мембраны. Гемолиз может наступить также в результате действия веществ, растворяющих жиры(например, хлороформа, эфира и т.п.). Гемолитическое действие различных моющих средств обусловлено тем, что они снижают поверхностное натяжение между водной и липидной фазами мембраны. Это приводит к эмульгированию жиров, вымыванию их из мембраны и образованию в ней отверстий, через которые выходит содержимое клетки. 

Гемолизирующими свойствами обладают яды некоторых змей

(биологический гемолиз).

При сильном встряхивании ампулы с кровью также наблюдается разрушение мембраны эритроцитов — механический гемолиз. Он может проявляться у больных с протезированием клапанного аппарата сердца и сосудов. Кроме того, механический гемолиз иногда возникает при длительной ходьбе (маршевая гемоглобинурия) из-за травмирования эритроцитов в капиллярах стоп.

Если эритроциты заморозить, а потом отогреть, то возникает гемолиз, получивший наименование термического. Наконец, при переливании несовместимой крови и наличии аутоантител к эритроцитам развивается иммунный гемолиз. Последний является причиной возникновения анемий и нередко сопровождается выделением гемоглобина и его производных с мочой (гемоглобинурия).

 

 

Рис.2. А. Нормальные эритроциты в форме двояковогнутого диска. Б.

Сморщенные эритроциты в гипертоническом солевом растворе. 

 

 

ФУНКЦИИ ЭРИТРОЦИТОВ  

Эритроцитам присущи три основные функции: транспортная, защитная и регуляторная.

Транспортная функция эритроцитов заключается в том, что они транспортируют О2 и СО2, аминокислоты, полипептиды, белки, углеводы, ферменты, гормоны, жиры, холестерин, различные биологически активные соединения (простагландины, лейкотриены и др.), микроэлементы и др.

Защитная функция эритроцитов заключается в том, что они играют существенную роль в специфическом и неспецифическом иммунитете и принимают участие в сосудисто-тромбоцитарном гемостазе, свертывании крови и фибринолизе.

Регуляторную функцию эритроциты осуществляют благодаря содержащемуся в них гемоглобину; регулируют рН крови, ионный состав плазмы и водный обмен. Проникая в артериальный конец капилляра, эритроцит отдает воду и растворенный в ней кислород и уменьшается в объеме, а переходя в венозный конец капилляра, забирает воду, СО2 и продукты обмена, поступающие из тканей и увеличивается в объеме.

Благодаря эритроцитам во многом сохраняется относительное постоянство состава плазмы. Это касается не только солей. В случае увеличения концентрации в плазме белков эритроциты их активно адсорбируют. Если же содержание белков в крови уменьшается, то эритроциты отдают их в плазму. Эритроциты являются носителями глюкозы и гепарина, обладающего выраженным противосвертывающим действием. Эти соединения при увеличении их концентрации в крови проникают через мембрану внутрь эритроцита, а при снижении — вновь поступают плазму.

Эритроциты являются регуляторами эритропоэза, так как в их составе содержатся эритропоэтические факторы, поступающие при разрушении эритроцитов в костный мозг и способствующие образованию эритроцитов. В случае разрушения эритроцитов из освобождающегося гемоглобина образуется билирубин, входящий в состав желчи.

 

 

ЭРИТРОН. ЭРИТРОПОЭЗ  

Понятие «эритрон» введено Каслом для обозначения массы эритроцитов, находящихся в циркулирующей крови, в кровяных депо и костном мозге. Принципиальная разница между эритроном и другими тканями организма заключается в том, что разрушение эритроцитов осуществляется преимущественно макрофагами за счет процесса, получившего наименование «эритрофагоцитоз». Образующиеся при этом продукты разрушения и в первую очередь железо используются на построение новых клеток. Таким образом, эритрон является замкнутой системой, в которой в условиях нормы количество разрушающихся эритроцитов соответствует числу вновь образовавшихся.

Эритропоэз. Эритроциты образуются в кроветворных тканях - желточном мешке у эмбриона, печени и селезенке у плода и красном костном мозге плоских костей у взрослого. Во всех этих органах содержатся так называемые плюрипотентные стволовые клетки-общие предшественники всех клеток крови. На следующем (по степени дифференцировки) уровне находятся коммитированные предшественники, из которых уже может развиваться только один тип клеток крови (эритроциты, моноциты, гранулоциты, тромбоциты или лимфоциты). Пройдя еще несколько стадий дифференцировки и созревания, юные безъядерные эритроциты выходят из костного мозга в виде так называемых ретикулоцитов.

Созревшие эритроциты циркулируют в крови в течение 100-120 дней, после чего фагоцитируются клетками ретикулоэндотелиальной системы костного мозга (а при патологии - также печени и селезенки). Однако не только эти органы, но и любая другая ткань способна разрушать кровяные тельца, о чем свидетельствует постепенное исчезновение «синяков» (подкожных кровоизлияний). 

После кровопотери и при патологическом укорочении жизни эритроцитов скорость эритропоэза может возрастать в несколько раз. Мощным стимулятором эритропоэза служит снижение парциального давления О2 (т.е. несоответствие между потребностью ткани в кислороде и его поступлением).

 Как только эритроцит достигает стадии ретикулоцита, он растягивает стенку капилляра, благодаря чему сосуд раскрывается и ретикулоцит вымывается в кровоток, где и превращается за 35—45 часов в молодой эритроцит — нормоцит. В норме в крови содержится не более 1—2% ретикулоцитов. 

 В кровотоке эритроциты живут 80—120 дней. Продолжительность жизни эритроцитов у мужчин несколько больше, чем у женщин. 

Для нормального эритропоэза необходимо железо. Последнее поступает в костный мозг при разрушении эритроцитов, из депо, а также с пищей и водой. Взрослому человеку для нормального эритропоэза требуется в суточном рационе 12—15 мг железа. Железо откладывается в различных органах и тканях, главным образом в печени и селезенке. Если железа в организм поступает недостаточно, то развивается железодефицитная анемия. Всасыванию железа в кишечнике способствует аскорбиновая кислота, переводящая Fе3+ в Fе2+, который сохраняет растворимость при нейтральных и щелочных значениях рН. На участке слизистой оболочки тонкой кишки имеются рецепторы, облегчающие переход железа в энтероцит, а оттуда в плазму. В слизистой оболочке тонкой кишки находится белок-переносчик железа — трансферрин. Он доставляет железо в ткани, имеющие трансферриновые рецепторы. В клетке комплекс трансферрина и железа распадается, и железо вступает в связь с другим белком-переносчиком – ферритином. Клеткипредшественники зрелых эритроцитов накапливают железо в ферритине. В дальнейшем оно используется, когда клетка начинает образовывать большое количество гемоглобина.

Важным компонентом эритропоэза является медь, которая усваивается непосредственно в костном мозге и принимает участие в синтезе гемоглобина. Если медь отсутствует, то эритроциты созревают лишь до стадии ретикулоцита. Медь катализирует образование гемоглобина, способствуя включению железа в структуру гема.

Недостаток меди приводит к анемии.

Для нормального эритропоэза необходимы витамины и в первую очередь витамин В12 и фолиевая кислота. Эти витамины оказывают сходное взаимодополняющее действие на эритропоэз. Витамин В12 (внешний фактор кроветворения) синтезируется микроорганизмами, и некоторыми водорослями. Для его образования необходим кобальт. В организм человека витамин В12 поступает с пищей – особенно его много в печени, мясе, яичном желтке.

Для всасывания витамина В12  требуется внутренний фактор кроветворения, который носит наименование «гастромукопротеин» или фактор Касла. Это вещество является комплексным соединением, образующимся в желудке.

Фолиевая кислота, или витамин В7, является водорастворимым витамином, содержащимся во многих растительных продуктах, а также в печени, почках, яйцах.

Витамин В12 и и фолиевая кислота принимают участие в синтезе глобина. Они обусловливают образование в эритробластах нуклеиновых кислот, являющихся одним из основных строительных материалов клетки.

Немаловажную роль в регуляции эритропоэза играют другие витамины группы В, а также железы внутренней секреции. Все гормоны, регулирующие обмен белков (соматотропный гормон гипофиза, гормон щитовидной железы — тироксин и др.) и кальция (паратгормон, тиреокальцитонин), необходимы для нормального эритропоэза. Мужские половые гормоны (андрогены) стимулируют эритропоэз, тогда как женские (эстрогены) — тормозят его, что обусловливает меньшее число эритроцитов у женщин по сравнению с мужчинами.

Особо важную роль в регуляции эритропоэза играют специфические вещества, получившие наименование «эритропоэтины». Еще в 1906 г. показано, что сыворотка крови кроликов, перенесших кровопотерю, стимулирует эритропоэз. В дальнейшем было установлено, что эритропоэтины присутствуют в крови животных и людей, испытывающих гипоксию — недостаточное поступление к тканям кислорода, что наблюдается при анемиях, подъеме на высоту, мышечной работе, снижении парциального давления кислорода в барокамере, заболеваниях сердца и легких. В небольшой концентрации эритропоэтины обнаружены в крови здоровых людей, что позволяет считать их физиологическими регуляторами эритропоэза. Вместе с тем при анемиях, сопровождающих заболевания почек, эритропоэтины отсутствуют или их концентрация значительно снижается. Эти данные позволили предположить, что местом синтеза эритропоэтинов являются почки. Эритропоэтины образуются также в печени, селезенке, костном мозге. Получены факты, свидетельствующие о том, что мощной эритропоэтической активностью обладают полипептиды эритроцитов, молекулярная масса которых не превышает 10000.

Эритропоэтины оказывают действие непосредственно на клеткипредшественники эритроидного ряда (КОЕ-Э – колониеобразующая единица эритроцитарная). Эритропоэтины вызывают:

1) ускорение и усиление перехода стволовых клеток костного мозга в эритробласты; 

2) увеличение числа митозов клеток эритроидного ряда; 

3) исключение одного или нескольких циклов митотических делений; 

4) ускорение созревания неделящихся клеток — нормобластов, ретикулоцитов.

Ряд гемопоэтических факторов образуется стромой костного мозга и костномозговыми фибробластами. «Микроокружение» костного мозга является важнейшей частью кроветворного механизма. Эритроидные предшественники, размещенные на ячеистой сети костномозговых фибробластов, быстро развиваются и втискиваются между ними. Это объясняется тем, что для дифференцировки эритроидных клеток требуется их плотное прикрепление (адгезия) к окружающим структурам. Кроме того, фибробласты и эндотелиальные клетки являются источником ростковых факторов кроветворения.

На эритропоэз действуют соединения, синтезируемые моноцитами, макрофагами, лимфоцитами и другими клетками, получившие название «интерлейкины». Согласно международной классификации, они обозначаются арабскими цифрами (ИЛ-1, ИЛ-2 и т. д.). На полипотентную стволовую клетку (ПСК) непосредственно влияют и способствуют ее дифференцировке ИЛ-3, ИЛ-6, ИЛ-11 и ИЛ-12. В частности, активированные макрофаги выделяют ИЛ-1, а также фактор некроза опухолей (ФНО). ИЛ-1 и ФНО стимулируют фибробласты и

эндотелиальные клетки, благодаря чему они усиленно продуцируют так называемый белковый фактор Стила, оказывающий влияние

непосредственно на ПСК и способствующий ее дифференцировке. Кроме того, фибробласты, эндотелиальные клетки и активированные Тлимфоциты способны выделять ИЛ-6, ИЛ-11 и гранулоцитарномакрофагальный колониестимулирующий фактор (ГМ - КСФ). Фактор Стила, ИЛ-3, ИЛ-6, ИЛ-11, ИЛ-1 и ГМ-КСФ относятся к

раннедействующим гемопоэтическим ростовым факторам. По мере того как родоначальники нескольких линий кроветворных клеток дифференцируются в родоначальники одной линии, в реакцию вступают позднедействующие гемопоэтические ростовые факторы и эритропоэтин.

Важную роль играют внутриядерные регуляторы транскрипции в эритроне ГАТА-1 и НФЕ-2. Отсутствие ГАТА-1 предотвращает образование эритроцитов, недостаток НФЕ-2 нарушает всасывание железа в кишечнике и синтез глобина.

 

ГРУППЫ КРОВИ

 

 

 

Система АВО

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента (лицо, которому переливают кровь).

С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К. Ландштейнер впервые обнаружил, что плазма, или сыворотка, одних людей способна агглютинировать (склеивать) эритроциты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых а и β. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и а, В и β.

Установлено, что агглютинины, являясь природными антителами, имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае происходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или четыре группы крови:

I — аβ,II — А β, III — В а, IV — АВ.

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины, их также два вида и они обозначаются, как и агглютинины, буквами а и β. При встрече одноименных агглютиногенаи гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37—40 °С. Вот почему при переливании несовместимой крови у человека уже через 30—40 с наступаетгемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглютиногены и агглютинины, происходит агглютинация, но не наблюдается гемолиз. В плазме людей с II, III, IV группами крови имеются антиагглютинины — это покинувшие эритроциты и ткани агглютиногены. Обозначаются они, как и агглютиногены, буквами А и В (табл. 1).

 

Таблица 1. Группы крови – система ABO

 

Группы крови

Эритроциты

Плазма или сыворотка

агглютиногены агглютинины и гемолизины антиагглютинины
I (0) II (A) III (B) IV (AB) 0 A B AB αβ β α 0 0 A B AB

 

Как видно из таблицы, I группа крови не имеет агглютиногенов, а потому по международной классификации обозначается как группа О, II — носит наименование А, III — В, IV — АВ.



Поделиться:


Последнее изменение этой страницы: 2021-11-27; просмотров: 86; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.37.129 (0.102 с.)