Схема и режимы работы амплитудного модулятора 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Схема и режимы работы амплитудного модулятора



Схема амплитудного модулятора на основе резонансного усилителя представлена на рис. 8.5.

Рис. 8.5. Схема амплитудного модулятора на основе резонансного усилителя

На вход резонансного усилителя, работающего в нелинейном режиме, подаются:

несущее колебание от автогенератора с помощью высокочастотной трансформаторной связи контура входной цепи с базой транзистора;

модулирующий сигнал с помощью низкочастотного трансформатора.

Конденсаторы и – блокировочные, обеспечивают развязку входных цепей по частотам несущего колебания и модулирующего сигнала, т.е. развязку по высокой и низкой частотам. Колебательный контур в цепи коллектора настроен на частоту несущего колебания, добротность контура обеспечивает полосу пропускания , где – наивысшая частота в спектре модулирующего сигнала.

Выбором рабочей точки определяется режим работы модулятора. Возможны два режима: режим малых и режим больших сигналов.

а. Режим малых входных сигналов

Этот режим устанавливается выбором рабочей точки в середине квадратичного участка ВАХ транзистора. Выбором амплитуды несущего колебания обеспечивается работа модулятора в пределах этого участка (рис. 8.6).

Рис. 8.6. Режим малых входных сигналов амплитудного модулятора

Амплитуда напряжения на колебательном контуре, резонансная частота которого равна несущей частоте, определяется амплитудой первой гармоники тока, т.е. , где - резонансное сопротивление контура. Учитывая, что средняя крутизна ВАХ в пределах рабочего участка равна отношению амплитуды первой гармоники к амплитуде несущего колебания, т.е. , можно записать

.

Под воздействием модулирующего напряжения, подаваемого на базу транзистора, будет изменяться положение рабочей точки, а значит, будет изменяться и средняя крутизна ВАХ. Так как амплитуда напряжения на колебательном контуре пропорциональна средней крутизне, то для обеспечения амплитудной модуляции несущего колебания необходимо обеспечить линейную зависимость крутизны от модулирующего сигнала. Покажем, что это возможно при использовании рабочего участка ВАХ, аппроксимируемого полиномом второй степени.

Итак, в пределах квадратичного участка ВАХ, описываемого полиномом, существует входное напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

.

Начальные фазы колебаний будем считать в дальнейшем равными 0, т.к. их величины не имеют принципиального значения для понимания процесса амплитудной модуляции.

Спектральный состав тока коллектора определяется следующим образом:

.

Выделяем первую гармонику тока:

.

Таким образом, амплитуда первой гармоники равна:

.

Как видно из полученного выражения, амплитуда первой гармоники тока линейно зависит от модулирующего напряжения. Следовательно, средняя крутизна также будет линейно зависеть от модулирующего напряжения.

.

Тогда напряжение на колебательном контуре будет равно:

.

Следовательно, на выходе рассматриваемого модулятора формируется амплитудно-модулированный сигнал вида:

.

Здесь – коэффициент глубины модуляции;

– амплитуда высокочастотного колебания на выходе модулятора в отсутствие модуляции, т.е. при .

При проектировании передающих систем важным требованием является формирование амплитудно-модулированных колебаний большой мощности при достаточном КПД. Очевидно, что рассмотренный режим работы модулятора не может обеспечить эти требования, особенно первое из них. Поэтому наиболее часто используют так называемый режим больших сигналов.

б. Режим больших входных сигналов

Этот режим устанавливается выбором рабочей точки на ВАХ транзистора, при котором усилитель работает с отсечкой тока. В свою очередь, выбором амплитуды несущего колебания обеспечивается изменение амплитуды импульсов тока коллектора по закону модулирующего сигнала (рис. 8.7). Это приводит к аналогичному изменению амплитуды первой гармоники коллекторного тока и, следовательно, изменению амплитуды напряжения на колебательном контуре модулятора, так как

и .

Рис. 8.7. Режим больших входных сигналов амплитудного модулятора

Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента . Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции .

В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом

,

где – коэффициенты пропорциональности.

При передаче информации с помощью радиосигналов, модулированных по амплитуде, мощность на выходе передатчика используется нерационально. Основная доля излучаемой мощности приходится на несущее колебание. Мощность боковых полос составляет всего несколько процентов от общей мощности передатчика (4,5% при коэффициенте модуляции m = 0,3). Кроме того, радиосигнал с амплитудной модуляцией содержит избыточную информацию, так как обе боковые полосы содержат одинаковую информацию о передаваемом сигнале.

В диапазоне коротких волн для передачи сообщений широко используется однополосная модуляция (ОМ ), свободная от перечисленных выше недостатков. Для того, чтобы оценить достоинства и недостатки однополосной модуляции, рассмотрим процесс формирования однополосного сигнала. Однополосный сигнал формируется из амплитудно-модулированного колебания, и этапы процесса формирования поясняются структурной схемой устройства, представленной на рис. 18.1.

Рис. 18.1

В балансном модуляторе колебания с высокой частотой f 0 модулируются по амплитуде информационным низкочастотным сигналом с частотой F (или полосой частот от F МИН до F МАКС). В балансном модуляторе подавляется несущая частота f 0.На его выходе присутствуют только сигналы боковых полос – верхняя с частотой f 0+ Σ Fi и нижняя с частотой f 0 – Σ Fi. Под Σ F понимается суммарный спектр модулирующего колебания. Далее двухполосный сигнал с частотами f 0 ± Σ Fi пропускается через фильтр, полоса пропускания которого совпадает с одной из боковых – верхней или нижней. На выходе устройства (рис. 18.1) формируется верхняя боковая полоса. Процесс формирования ОМ иллюстрируется на спектральном уровне рисунком 18.2.

Видно, что спектр однополосного сигнала по форме совпадает со спектром информационного сигнала, смещенного в область более высоких частот.

Рис. 18.2 Рис.18.2 позволяет оценить некоторые достоинства однополосного сигнала:

–уменьшается полоса частот, которую занимает передатчик ОМ. Появляется возможность увеличить число каналов связи в заданном диапазоне частот без взаимных помех,

–за счет подавления несущего колебания можно увеличить мощность боковой полосы без увеличения максимальной мощности радиопередатчика,

–уменьшаются взаимные помехи соседним каналам связи, так как однополосный передатчик излучает только во время передачи информации. Для сравнения – передатчик с амплитудной модуляцией излучает несущее колебание и в режиме молчания, и в режиме модуляции,

–сужение спектра излучаемого передатчиком сигнала позволяет вдвое уменьшить полосу пропускания радиоприемника, уменьшить мощность внешних и внутренних шумов в полосе пропускания радиоприемного устройства, тем самым увеличить соотношение сигнал/шум на его выходе,

–снижаются искажения принимаемого сигнала за счет избирательного «замирания». Эти искажения проявляются в диапазоне коротких волн при приеме сигналов, пришедших в точку приема по различным трассам.

Среди перечисленных достоинств ОМ следует подробнее рассмотреть вопрос, связанный с выигрышем по мощности в радиопередатчике. Анализ выполним, основываясь на том, что пиковая мощность на выходе передатчика при всех изменениях структуры сигнала одинакова. Этой мощности в антенне соответствует ток в антенне I A МАКС.

При m = 1 выигрыш по мощности равен 4, а при меньших значениях коэффициента модуляции он получается еще больше.

Переход с двухполосной на однополосную модуляцию (рис. 18.3, в) не приводит к увеличению эффективности радиолинии «передатчик – приемник», потому что амплитуда сигнала на выходе детектора приемника при приеме двухполосного и однополосного сигнала получается одинаковой.

Однако двухполосная модуляция в радиосвязи не применяется из-за широкого спектра сигнала, а также потому, что в радиоприемнике для нормальной работы детектора требуется восстановить подавленную в передатчике несущую с точностью до фазы. Для детектирования однополосного сигнала достаточно восстановить несущую с точностью до частоты, что технически значительно проще.

Сужение полосы приемника в два раза для приема ОМ эквивалентно увеличению мощности передатчика вдвое за счет увеличения отношения «сигнал/шум». Отсутствие эффекта «избирательного замирания» радиосигнала дает такой же эффект. Общий выигрыш по мощности при переходе от АМ к однополосной модуляции получается равным 16, но только при наличии «избирательных замираний». Обычный выигрыш по мощности: n = 6 – 8.

30. Методы детектирования сигналов с АМ: линейное и квадратичное.



Поделиться:


Последнее изменение этой страницы: 2021-09-26; просмотров: 410; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.111.183 (0.012 с.)