Общее устройство и работа двигателя 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Общее устройство и работа двигателя



Общее устройство и работа двигателя

Принцип работы дизельного мотора

Основная особенность дизельного ДВС в том, что он воспламенение топливно-воздушной смеси в камерах сгорания происходит за счет сжатия и нагрева. Распыление диз. топлива осуществляется через форсунки. Когда воздух горячий, дизельное топливо легко воспламеняется. Перед попаданием топлива в камеры сгорания цилиндров ДВС, оно проходит очищающие фильтры, которые очищают от механических примесей, которые быстро нанесли бы ущерб всему устройству.
Порядок работы дизельной системы:

1. Воздух подается через впускной клапан при движении поршня вниз.

2. Далее поршень поднимается вверх и сжимает воздух в 20 раз. Давление в этот момент составляет 40 килограмм на 1 сантиметр. Температура воздуха в этот момент достигает 500 градусов по Цельсию.

3. Когда воздух сжат и нагрет, форсунки этого цилиндра впрыскивают и распыляют топливо. За счет очень сильно нагретого воздуха дизтопливо воспламеняется. Такой способ работы исключает присутствие в системе свечей зажигания. Также в дизельных агрегатах отсутствует система зажигания. Процесс самовоспламенения солярки с воздухом от свечи накаливания. Также, в устройстве нет дроссельной заслонки, благодаря чему обеспечивается большой крутящий момент. Но, число оборотов в это время находится на низком уровне. За один цикл работы дизеля форсунки могут подавать топливо несколько раз.

4. При воспламенении горючей смеси, взрывная волна толкает поршень вниз. Поршень, который соединен с коленвалом посредством шатуна и вращает коленвал.

5. Далее, от нижней мертвой точки (НМТ) поршень движется вверх и выталкивает отработанные газы через выпускные клапана.

Назначение, устройство и работа кривошипно-шатунного механизма.

Назначение

 

Кривошипно-шатунный механизм служит для преобразования поступательного движения поршня под действием энергии расширения продуктов сгорания топлива во вращательное движение коленчатого вала. Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии.

Устройство:

 

Принцип работы

 

Если в цилиндр ввести заряд горючей смеси, необходимый для поддержания горения, а затем его зажечь электрической искрой, выделится большое количество тепла и давление в цилиндре повысится. Давление расширяющихся газов передастся во все стороны, в том числе и на поршень, заставляя его перемещаться. Так как поршень шарнирно соединен с верхней головкой шатуна при помощи пальца, а нижняя головка шатуна подвижно закреплена на шейке коленчатого вала, то при перемещении поршня вместе с шатуном вращается коленчатый вал и закрепленный на его конце маховик. При этом прямолинейное движение поршня при помощи шатуна и коленчатого вала преобразуется во вращательное движение маховика.

Первый такт – впуск – поршень перемещается от верхней мертвой точки (в.м.т.) к нижней мертвой точке (н.м.т.), клапан впускного отверстия открыт, а выпускного – закрыт. В цилиндре создается разряжение, и горючая смесь заполняет его. Следовательно, такт впуска служит для наполнения цилиндра свежим зарядом горючей смеси.

Второй такт – сжатие – поршень перемещается от н.м.т. к в.м.т., оба отверстия закрыты клапанами.

Третий такт – сгорание и расширение газов. В конце такта сжатия между электродами свечи возникает электрическая искра, которая воспламеняет рабочую смесь. Выделено при сгорании рабочей смеси тепло нагревает газы до температуры 2200-2500°C; под действием которого поршень перемещается вниз от в.м.т. к н.м.т. Оба отверстия закрыты клапанами. Движение поршня при этом также называют рабочим ходом. При рабочем ходе действующее на поршень давление газов через поршневой палец и шатун передается на кривошип, создавая на коленчатом валу крутящий момент. Рабочий ход поршня служит для преобразования тепловой энергии сгорания топлива в механическую работу.

Четвертый такт – выпуск – поршень перемещается вверх от н.м.т. к в.м.т. Впускное отверстие закрыто. Отработавшие газы выпускаются из цилиндра в атмосферу. Назначение такта выпуска – очистить цилиндр от отработавших газов.

При работе двигателя процессы, происходящие в цилиндре, беспрерывно повторяются в указанном порядке.

Рабочим циклом двигателя называется совокупность процессов, происходящих в цилиндре в определенной последовательности – впуск, сжатие, рабочий ход и выпуск.

Поршень, перемещаясь в цилиндре, достигает то верхнего, то нижнего крайних положений. Крайние положения, в которых поршень меняет направление движения, соответственно называются верхней и нижней мертвыми точками

Расстояние, которое приходит поршень между мертвыми точками, называется ходом поршня. За каждый ход поршня коленчатый вал повернется на Ѕ оборота, или на 180°. Процесс, происходящий внутри цилиндра за один ход поршня, называется тактом.

При перемещении поршня от верхней мертвой точки к нижней в цилиндре освобождается пространство, которое называется рабочим объемом цилиндра.

Когда поршень находится в верхней мертвой точке, над ним наименьшее пространство, называемое объемом камеры сгорания.

Рабочий объем цилиндра и объем камеры сгорания, вместе взятые, составляют полный объем цилиндра. В многоцилиндровых двигателях сумма рабочих объемов всех цилиндров выражается в литрах и называется литражом двигателя.

Одним из важных показателей двигателя является его степень сжатия, определяемая отношением полного объема цилиндра к объему камеры сгорания. С повышением степени сжатия двигателя повышается его экономичность и мощность.

Назначение, устройство и работа системы охлаждения. Способы охлаждения. Охлаждающие жидкости и требованиям к ним. Тепловой режим двигателя и контроль за температурой охлаждающей жидкости.

Виды систем охлаждения двигателя

Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:

Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.

Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности, нагретой и охлажденной жидкостей)

Комбинированная (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения. Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.
Она состоит из следующих элементов:

· Радиатор системы охлаждения.

· Вентилятор радиатора.

· Малый и большой охлаждающие контуры.

· Рубашка системы охлаждения (система каналов в блоке цилиндров). Датчик температуры.

· Термостат.

·  Расширительный бачок.

·  Насос (помпа).

· Радиатор печки.

·  Масляный радиатор (опционально).

· Радиатор системы рециркуляции отработавших газов (опционально).

В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает термостат и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.
Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.
Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с турбонаддувом также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.

 

Охлаждающие жидкости – жидкие среды, выполняющая функцию передачи тепла в системах охлаждения двигателей и других агрегатах, механизмах и устройствах.

Первые жидкости для охлаждения представляли собой обычную воду, взятую из открытых водоемов – прудов, озер, ручьев и даже придорожных луж.

Вода характеризуется большой теплоемкостью, высокой текучестью, поэтому ее использование является достаточно эффективным.

Однако вода обладает некоторыми свойствами, которые делают невозможным ее применение в современных машинах:

· Высокая температура замерзания. Уже при 0 °C вода начинает превращаться в лед, который не может циркулировать по системе. Кроме того, расширяясь в закрытом объеме, она способна легко разорвать и вывести из строя любую систему

· Низкая температура кипения. Этот параметр также не дает возможности использовать воду в современных системах, где температура носителя достигает +105-110 °C

· Вода способствует образованию на стенках системы очагов коррозии

· Неподготовленная вода из открытых водоемов является источником образования твердых отложений – накипи. При этом эффективность системы охлаждения или обогрева резко падает

Предпусковой подогреватель.

Назначение предпусковых подогревателей

Считается, что каждый «холодный» запуск двигателя сокращает его ресурс на 300-500 километров. Силовой агрегат испытывает большие нагрузки. Вязкое масло не поступает к парам трения и далеко от оптимальных рабочих характеристик. Кроме того, на прогрев двигателя до приемлемой температуры расходуется немало топлива.

Да и в целом, сложно найти водителя, которому нравится находиться в холодном автомобиле в ожидании, когда двигатель достигнет нужной температуры. В идеале всем хочется сесть в машину с уже прогретым двигателем и теплым салоном и сразу поехать. Такую возможность дает установка предпускового подогревателя двигателя. На современном рынке автомобильных отопителей представлены разные модели — от иностранных до отечественных, от дешевых до дорогих. Виды предпусковых подогревателей Все разнообразие подобных систем можно разделить на две категории:

· автономные;

· зависимые (электрические).

Автономные подогреватели

 В категорию автономных отопителей входят:

· жидкостные;

·  воздушные;

·  тепловые аккумуляторы.

Воздушный отопитель действует как дополнительная печка для обогрева салона. Он не прогревает двигатель или прогревает, но незначительно. В таких устройствах имеется камера сгорания, куда поступает топливовоздушная смесь при помощи топливного насоса и забора воздуха извне. Уже нагретый воздух подается в салон автомобиля. Питается устройство от аккумулятора 12В/24В, в зависимости от габаритов автомобиля и требуемой мощности. Устанавливается, главным образом, в салоне автомобиля.

Жидкостные отопители помогают прогреть не только салон, но в первую очередь двигатель. Они устанавливаются в моторном отсеке автомобиля. Отопитель связывается с системой охлаждения двигателя. Для прогрева используется антифриз, который проходит через подогреватель. Вырабатываемое тепло через теплообменник нагревает антифриз. Жидкостный насос помогает циркулировать жидкости по системе. Теплый воздух подается в салон при помощи вентилятора, электромотор которого питается от электросети автомобиля. В подогревателях используется своя камера сгорания и блок управления, который контролирует подачу топлива, процесс горения и температуру.

Газообразные топлива

По физическому состоянию горючие газы делятся на две группы: сжатые и сжиженные.

Если критическая температура углеводородов ниже обычных температур при эксплуатации автомобилей, то их применяют в сжатом виде, а если выше-то в сжиженном виде под давлением 1,5-2,0 МПа.

Требования к газообразным топливам:

· обеспечение хорошего смесеобразования;

·  высокая калорийность горючей смеси;

· отсутствие коррозии и коррозионных износов;

·  минимальное образование отложений во впускном и выпускном трактах;

· сохранение качества при хранении и транспортировании;

· низкая стоимость производства и транспортирования.

Промышленность выпускает СНГ для автомобилей двух марок: СПБТЗ - смесь пропана и бутана техническая зимняя; СПБТЛ - … летняя. В состав СНГ добавляют специальные вещества (одоранты), имеющие сильный запах, т.к. СНГ не имеет ни цвета не запаха, и обнаружить их утечку сложно. Для этой цели используют этилмеркаптан C2H4SH, имеющий резкий неприятный запах, который ощущается уже при концентрации 0,19 г. на 1000 м3 воздуха. Иногда утечку удается определить на слух или с помощью приборов.

Эксплуатационные свойства автомобилей с газовыми двигателями, работающими на СНГ, в сравнении с автомобилями, работающими на бензине, оцениваются следующим образом: пусковые качества до -5 «С равноценны; при более низких температурах запуск холодного двигателя затруднен; показатели динамичности автомобиля ухудшается на 5…8%; повышается мощность и улучшается топливная экономичность двигателей, так как детонационная стойкость СНГ выше (04 выше 100 единиц), чем у бензина, и можно форсировать двигатель по степени сжатия; периодичность смены масла увеличивается в 2,0…2,5 раза; межремонтный ресурс двигателя увеличивается в 1,4…2,0 раза; трудоемкость ТО и Р возрастает на 3…5%, но эти затраты перекрываются экономией от увеличения межремонтного ресурса двигателей. В настоящее время выпускаются газобаллонные автомобили двух типов: со специальными двигателями, предназначенными для работы на СНГ и имеющими резервную систему питания для кратковременной работы на бензине; с универсальными двигателями, допускающими работу как на СНГ, так и на бензине (у автомобилей этой группы мощность снижается примерно на 10%). Сжатые газы. Основные компоненты - метан СН», окись углерода СО и водород Нз. Получают из горючих газов различного происхождения - природных, попутных нефтяных, коксовых и других. Их называют сжатыми природными газами или СПГ. Содержание метана в СПГ составляет 40… 82%. Критическая температура метана составляет -82°С, поэтому без охлаждения СПГ перевести в жидкое состояние нельзя. Существует две марки СПГ - А и Б, которые отличаются содержанием метана и азота Газобаллонные установки для СПГ рассчитаны на работу при давлении 19,6 МПА. Баллоны для СПГ изготавливаются толстостенными и имеют большую массу. Так, батарея из 8 50-литровых баллонов весит более 0,5 т. Следовательно, существенно снижается грузоподъемность автомобиля.

Кроме того, пробег автомобиля на одной заправке при работе на СПГ в 2 раза меньше, чем на бензине. Более перспективна криогенная технология хранения СПГ в сжиженном виде. Метан легче воздуха, поэтому при утечках скапливается в верхней части помещения. Метан имеет высокую детонационную стойкость, поэтому двигатели можно форсировать по степени сжатия. СПГ воспламеняется в камере сгорания при температуре 635…645°С, что значительно выше температуры воспламенения бензина. Это затрудняет пуск двигателя, особенно при низких температурах воздуха. В то же время по опасности воспламенения и пожароопасносности они значительно безопаснее бензина.

Преимущества СПГ перед бензинами: повышается срок службы моторного масла в 2,0…3,0 раза; увеличивается ресурс двигателя на 35…40% вследствие отсутствия нагара на деталях цилиндропоршневой группы; увеличивается на 40% срок службы свечей зажигания; на 90% снижается выброс вредных веществ с отработавшими газами, особенно СО.

 Недостатки СПГ: цена автомобиля возрастает примерно на 27%; трудоемкость ТО и ТР возрастает на 7…8; мощность двигателя снижается на 18…20%, время разгона увеличивается на 24…30%, максимальная скорость уменьшается на 5…6%, максимальные углы преодолеваемых подъемов уменьшаются на 30…40%, эксплуатация автомобиля с прицепом затрудняется; дальность ездки на одной заправке не превышает 200…250 км; грузоподъемность автомобиля снижается 9…14%. С учетом достоинств и недостатков автомобилей, работающих на СПГ, определена область их рационального использования - перевозки в крупных городах и прилегающих к ним районах. Однако в последние годы большое количество водителей жалуются на некачественное топливо и небезосновательно беспокоятся за собственный транспорт.

Бензиновое топливо

Детонация вызывается самовоспламенением наиболее удаленной от запальной свечи части бензина-воздушной смеси, горение которой приобретает взрывной характер. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. Внешне детонация проявляется в появлении звонких металлических стуков - результата многократных отражений от стенок камеры сгорания образующихся ударных волн. Отечественная промышленность выпускает бензины следующих марок; А-76, А-80, АИ-92, АИ-93, АИ-95, АИ-98. Маркировка бензинов включает одну или две буквы и цифру: буква «А» - бензин автомобильный, «И» - исследовательский метод определения 04 (если нет «И» - то моторный), цифра указывает на октановое число. Автомобильные бензины, за исключением марки АИ-98, подразделяются на виды: летний - для применения во всех районах, кроме северных и северовосточных, в период с 1 апреля до 1 октября; в южных районах допускается применять летний вид бензина в течение всего года; зимний - для применения в течение всех сезонов в северных и северо-восточных районах; в остальных районах - с 1 октября до 1 апреля.

Экологические требования к различным видам топлива

Рост автопарка, изменение форм собственности и видов деятельности существенно не повлияли на характер воздействия автотранспорта на окружающую природную среду. Он по-прежнему сохраняет лидерство в загрязнении атмосферы городов. На долю автотранспорта в России приходится 80% выбросов свинца, 59% окиси углерода, 32% оксидов азота. Выбросы от передвижных источников составляют около 11 млн тонн, от стационарных – 0,8 млн тонн ежегодно. Причем, доля стационарных источников загрязнения атмосферы имеет тенденцию к стабильному сокращению.

Специфика подвижных источников загрязнения (автомобилей) проявляется:

- в высоких темпах роста численность автомобилей по сравнению с ростом количества стационарных источников;

- их пространственной рассредоточенности (автомобили распределяются по территории и создают общий повышенный фон загрязнения);

- непосредственной близости к жилым районам (автомобили заполняют все местные проезды и дворы жилой застройки);

- более высокой токсичности выбросов автотранспорта по сравнению с выбросами стационарных источников;

- сложности технической реализации средств защиты от загрязнений на подвижных источниках;

 

- низком расположении источника загрязнения от земной поверхности, в результате чего отработавшие газы автомобилей скапливаются в зоне дыхания людей и слабее рассеиваются ветром по сравнению с промышленными выбросами и выбросами от стационарных источников транспорта, которые, как правило, имеют дымовые и вентиляционные трубы значительной высоты.

Перечисленные особенности передвижных источников приводят к тому, что автотранспорт создаёт в городах обширные зоны с устойчивым превышением санитарно-гигиенических нормативов загрязнения воздуха.

Высокий удельный вес автомобилей с карбюраторными двигателями наряду с широким применением этилированного бензина на большей части территории России обусловили загрязнение атмосферы соединениями свинца.

Применение этилированного бензина создает предпосылки для роста атмосферных загрязнений и с помощью государственных мер должно быть ограниченно, а в конечном итоге запрещено.

Загрязнение атмосферы передвижными источниками автотранспорта происходит в большей степени отработавшими газами через выпускную систему автомобильного двигателя, а также, в меньшей степени, картерными газами через систему вентиляции картера двигателя и углеводородными испарениями бензина из системы питания двигателя (бака, карбюратора, фильтров, трубопровода) при заправке и в процессе эксплуатации.

 Отработавшие газы автомобилей с карбюраторными двигателями в числе наиболее токсичных компонентов содержат оксид углерода, оксиды азота и углеводороды, а газы дизелей – оксиды азота, углеводороды, сажу и сернистые соединения. Один автомобиль ежегодно поглощает из атмосферы в среднем более 4 т кислорода, выбрасывая при этом с отработавшими газами примерно 800 кг угарного газа, 40 кг оксидов азота и почти 200 кг различных углеводородов. Снижению токсичности и нейтрализации отработавших газов уделяется основное внимание, и в этом направлении ведутся постоянные технические разработки.

Картерные газы вносят свою долю в загрязнение атмосферного воздуха. Их количество в двигателе возрастает с увеличением износа. Кроме того, оно зависит от условий движения и режима работы двигателя. На холостом ходу система вентиляции картерных газов, которой снабжены практически все современные двигатели, работает менее эффективно, что ухудшает экологические показатели автомобилей.

Испарения бензина в автомобиле имеют место при работе двигателя и в нерабочем состоянии. Внутренняя полость бензобака автомобиля всегда сообщается с атмосферой для поддержания давления внутри бака на уровне атмосферного по мере выработки бензина. Это необходимо для нормальной работы всей системы питания двигателя, но в то же время создает условия для испарения легких фракций бензина и загрязнения ими воздуха.

Отработавшие газы (ОГ), выбрасываемые автомобильными двигателями, содержат более 200 различных веществ, большинство из которых в большей или меньшей мере токсичны. Основными токсичными веществами, содержащимися в отработавших газах автомобильных двигателей и загрязняющими атмосферу, являются: окись (оксид) углерода (СО), оксиды азота (NОх), двуокись серы (SO2), углеводороды (CnHm), соединения свинца (при работе двигателей на этилированном бензине), сажа. При сжигании в автомобильном двигателе 1 т бензина образуется 180-300 кг окиси углерода, 20-40 кг углеводородов и 25-45 кг оксидов азота.

Окись углерода - газ без цвета и запаха, образуется в результате неполного сгорания топлива в двигателях. В отработавших газах двигателей искровым зажиганием в зависимости от регулировки карбюратора и технического состояния двигателя содержание СО колеблется в пределах 0,1-10% (по объему).

Оксиды азота состоят в основном из окиси (NO) и двуокиси азота (NO2). Окись азота – бесцветный газ, двуокись азота – газ красновато-бурового цвета с характерным запахом. Оксиды азота образуются в двигателе при высокой температуре сгорания топлива.

Двуокись серы образуется в результате сгорания топлива в дизелях. Ее концентрация в ОГ зависит от содержания серы в дизельном топливе, регламентируемого ГОСТ 305-82. Дизельное топливо по содержанию серы разделяется на два вида. В дизельном топливе I вида содержание серы не должно превышать 0,2%, а топливе II вида не более 0,5%.

Углеводороды подразделяются на предельные, непредельные и ароматические, в том числе канцерогенные. Среди канцерогенов наиболее опасным является 3, 4- бензапирен. Появление углеводородов в отработавших газах связано с разложением и неполным окислением углеводородов топлива в двигателе.

Содержание углеводородов в ОГ во многом зависит от технического состояния и регулировки двигателя и на холостом ходу колеблется от 100 до 5000%0 и более.

Соединение свинца образуется в ОГ в результате сгорания этилированного бензина. Содержание соединений свинца в ОГ зависит от их содержания в бензине. По ГОСТ 2084-77 (с изменениями) в этилированном бензине АИ-93 может быть до 0,37 мг/дм3 свинца, а в А-76- до 0,17 мг/дм3. В неэтилированном бензине допускается до 0,012 мг/дм3. Около 70-90% содержащихся в бензине свинцовых соединений, выбрасываются с ОГ, попадая в атмосферу, почву, воду.

Оценка токсичности (дымности) ОГ автомобильных двигателей осуществляется путем проведения специальных испытаний. При этом токсичность и дымность ОГ не должна превышать норм, установленных Правилами №15 и 83 ЕЭК ООН для автомобилей с бензиновыми двигателями, регламентируется ГОСТ 17.2.2.0.3-87 (табл.1). Проверка проводится при работе двигателя на двух режимах холостого хода: минимальной частоте вращения и повышенной- в диапазоне от 2000 об/мин до 0,8 nном, где nном - частота вращения, соответствующая максимальной мощности.

 

 

Общее устройство и работа двигателя



Поделиться:


Последнее изменение этой страницы: 2021-09-26; просмотров: 45; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.165.180 (0.042 с.)