Ошибки Фейнмана при выводе силы Кориолиса. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ошибки Фейнмана при выводе силы Кориолиса.



Из школьного курса математики известно, что одинаковые члены, содержащиеся в обеих частях уравнения, сокращаются, поскольку они являются лишними для истинности доказанного физически уравнения. После сокращения одинаковых множителей искомая величина и известные переменные разносятся по разным частям уравнения. В результате уравнение вида (x * y = a * x2 + b * x…) должно быть приведено к виду (y = f(x) = a * x + b…). В физике мы называем эту операцию законом сохранения истины (см. гл. 2.). Если это просто абстрактное математическое уравнение, то сокращение одинаковых членов не влияет на его истинность.

А вот закрепление в уравнении одинаковых множителей, например, в виде введения новых переменных в левой части уравнения вида (y * x = f(x) * x), которое после замены переменных приобретает новый вид (z = f(x)), правомерно только для новой истины, которую необходимо ещё доказать физически! Однако истинность уравнения моментов, которое получено умножением уравнения второго закона Ньютона на радиус, так никто в классической физике и не доказал, потому что такой физической величины, как момент, в природе не существует. Есть работа, сущность которой не меняется от изменения её названия на момент.  

Являясь истинным представителем классической физики, Фейнман естественно не мог допустить сокращения уравнения моментов на радиус, т.к. после этого оно просто перестало бы быть не только основным, но и вообще каким–либо уравнением классической динамики вращательного движения. Из этих же соображений Фейнман не мог признать момент работой, и поэтому ему неизбежно пришлось пойти и на нарушение закона сохранения истины, и соответственно на нарушения математических правил решения уравнений, истинность которых не доказана.

В любой провинции любой рядовой учитель математики любой средней школы поставил бы своему ученику твёрдую «двойку» за решение уравнений подобное решению Фейнмана. Однако классическая физика утвердила таким образом «твёрдую» двойку в выражении для силы и ускорения Кориолиса. И хотя для кориолисова напряжения двойка действительно твёрдая, безо всяких кавычек, она в классической физике не обоснована ни физически, ни математически, т.е. в классической физике она получена физически и математически незаконно.

В полном напряжении Кориолиса работает только одна его половина. Вторая половина это статическое напряжение двух противоположных сил – истинной силы Кориолиса и половины поддерживающей силы. Однако внутреннее напряжение движущейся вдоль радиуса замкнутой системы тело–физический радиус (направляющая) в динамике поворотного движения непосредственно не участвует и полезную работу не совершает. Следовательно, классическое выражение для динамической силы Кориолиса не верно:

F к ≠ 2 * m * ω * dr / dt

В классической динамике вращательного движения радиальная сила не создаёт внешний момент и соответственно в ней отсутствует истинная сила Кориолиса, которая в нашей версии и в реальной действительности противодействует поддерживающей силе. Поэтому в классической физике в нарушение первого закона Ньютона за силу Кориолиса ошибочно принимается ответная реакция на полное напряжение Кориолиса, включающее внутреннее статическое напряжение двух противодействующих сил внутри системы взаимодействия тела с радиусом.

Голая математика уравнения моментов основана исключительно только на ускоренном тангенциальном перемещении массы во вращательном движении, без учёта какого–либо противодействия этому перемещению. Именно поэтому поддерживающей силе в явлении Кориолиса противодействовать–то особо и нечему. И именно поэтому не корысти ради, а токмо волею голой математики Фейнман и получил силу Кориолиса, половина которой в соответствии с первым законом Ньютона не имеет права на существование.

Но Фейнман не виноват. Виноваты авторы уравнения моментов, нарушившие Закон Сохранения Истины, бездоказательно умножив второй закон Ньютона на радиус. А поскольку истинность уравнения моментов в классической физике не доказана, то в отношении него мы просто обязаны соблюдать хотя бы математические правила упрощения математических выражений путём сокращения недоказанных лишних общих множителей до истины второго закона Ньютона:

М/r = F = m * d (ω * r) / dt = m * r * dω / dt = m * r * ε = m * a = F

В этом выражении сомножители (ω) и (r) функционально одинаково влияют на конечный результат. Поэтому мы вправе абстрактно–математически заменить переменную дифференцирования (ω) на (r). Это абсолютно равнозначная замена переменных в отличие от классического вывода силы Кориолиса, в котором произведена неравнозначная замена одной переменной (ω) на две переменные (r2 = х * х). Именно эта неравнозначная замена и привела к завышению классической силы и ускорения Кориолиса вдвое. После дифференцирования по радиусу получим реальное значение силы Кориолиса:

F = m * d (ω * r) / dt = m * ω * dr / dt = m * ω * Ve = Fк

Кроме того, учитывая, что вывод уравнение моментов основан на понятии работы силы на окружном участке траектории равном радиусу, следует признать, что конечный результат этого вывода, т.е. само уравнение моментов на самом деле не соответствует понятию работы. Известно, что путь при равноускоренном движении с учётом разгона от 0 до V определяется половиной скорости. Поскольку в качестве пути при выводе уравнения моментов рассматривается радиус, то с учётом ускорения его величина равна:

r = ½ * v * t

Подставим полученное выражение для радиуса в уравнение моментов:

М = F * r = m * d (ω * r2) / dt = m * d (v * r) / dt = ½ * m * v2

Без промежуточных результатов окончательно имеем:

М = F * r = ½ * m * v2

Умножив обе части полученного уравнения на 2 и вновь переходя к традиционному представлению выражения (m * v2) через угловые величины (m * d (ω * r2) / dt), получим:

2М = 2F * r = m * v2 = m * d (ω * r2) / dt

После дифференцирования по радиусу имеем:

2F = 2 * m * ω * r / dt

Или окончательно:

Fк = m * ω * v

Таким образом, с учётом Закона Сохранения Истины, в соответствии с которым доказанным произведением силы на расстояние является работа силы, а вовсе не момент силы, реальная сила Кориолиса оказывается вдвое меньше классической.

Сторонники классической физики могут возразить, что момент силы – это уже не работа, а совсем другая физическая величина, без множителя (½). Существует, например, вывод уравнения моментов через векторное умножение второго закона Ньютона на радиус, из которого после дифференцирования по (dt) получается уравнение моментов.

[r * dmv / dt] = [F * r]

d[r * mv] / dt = [dr / dt * mv] + [r * dmv / dt]

Здесь (dr / dt) принимается за тангенциальную скорость, образующуюся вдоль вектора силы:

dr / dt = v

А поскольку произведение коллинеарных векторов равно нулю

[dr / dt * mv] = 0,

то:

d[r * mv] / dt = [F * r]

или

M = F * r = dL / dt = m * ω * d (r2) / dt = 2 * m * ω * dr / dt

Отсюда:

Fк = 2 * m * ω * vr

 

Но, во-первых, хотя в этом выводе работа не упоминается вообще, иного определения произведения силы на расстояние, чем работа в этом выводе так же не дано. Следовательно остаётся только классическое понимание работы, которое немыслимо без усредняющего множителя скорости и соответственно пути (½). Поэтому в этом выводе сила Кориолиса так же, как и у Фейнмана завышена вдвое.

А, во-вторых, этот вывод построен на вопиющем математическом и физическом противоречии. Если при первом дифференцировании (первое слагаемое в правой части после дифференцирования) выражение (dr / dt = vт) принимается за тангенциальную скорость, образующуюся вдоль вектора силы, то после упразднения выражения ([dr / dt * mv] = 0) и второго дифференцирования то же самое выражение для того же самого радиуса принимается уже за радиальную скорость (dr / dt = vr).

 

Таким образом, двойка в формулах классических силы и ускорения Кориолиса и соответственно возможное различие физического смысла работы и момента силы, как минимум, требует особого разъяснения, которого в классической физике, увы, нет. А отсутствие в физике особых сил вращения подтверждает, что в природе нет такой физической величины, как момент. Зато в физике есть завышенные вдвое сила и ускорение Кориолиса!  А причина этого искусственного парадокса, который в классической физике остаётся не только без объяснения, но и без должного внимания, состоит в том, что классическая физика не учитывает истинную силу Кориолиса, которая и лежит в основе явления Кориолиса.

В отсутствие поддерживающей вращение силы, угловая скорость, например, при увеличении радиуса уменьшается. Поэтому поддерживающей силе приходится компенсировать эти потери, восстанавливая линейную скорость до прежнего значения. На это уходит половина поддерживающей силы, реакция на которую составляет половину классической силы Кориолиса. Однако поскольку эти силы полностью скомпенсированы, то скомпенсированы и их реакции. Следовательно, эта уравновешенная часть поддерживающей силы не может определять силу Кориолиса, и совместно с истинной силой Кориолиса (см. гл. 3.4.2.) определяет лишь внутреннее напряжение ускоряющейся замкнутой системы тело–физический радиус (направляющая), которое естественно не определяет ускорение самой системы.

Далее, после полного восстановления линейной скорости, угловая скорость с учётом увеличившегося радиуса, всё ещё остаётся невосстановленной. При этом вторая половина поддерживающей силы, как раз и затрачивается на увеличение линейной скорости свыше её прежнего значения, за счёт чего окончательно восстанавливается и угловая скорость. Реакция на эту неуравновешенную половину поддерживающей силы и определяет силу Кориолиса, которая, таким образом вдвое меньше полной поддерживающей силы. Аналогичный процесс происходит и при уменьшении радиуса. Подробное теоретическое обоснование равенства затрат обеих частей поддерживающей силы и структуры этих затрат приведено в главе (4.2.) в выводе силы и ускорения Кориолиса через мерный радиан.

Таким образом, сам по себе правильный абстрактно–символьный математический аппарат бессилен в изучении природы, если он идёт вразрез с физическим смыслом, т.е. с философией природы в целом. Вывод Фейнмана – это даже не подгонка под ответ, это фундаментальная ошибка классической науки, как в математике, так и в физике. Это нарушение Закона сохранения истины, стоящего на охране всех остальных законов природы.

Если бы современные физики не были бы столь повально и бездумно увлечены голой математикой, то сила Кориолиса не была бы такой странной и загадочной в современной физике. И в ней давно бы нашлось место Истинной силе Кориолиса–Кеплера, которая объективно определяет сущность явления Кориолиса.

***

 Некоторые современные авторы в отношении величины силы и ускорения Кориолиса имеют точку зрения, сходную с нашей моделью поворотного движения. Однако наши взгляды на природу явления Кориолиса расходятся, тем не менее, и с ними. Наиболее близки к нашей точке зрения на явление Кориолиса авторы из Удмуртии (maholet. aero. ru), они пишут:

Применение теоремы Кориолиса для свободного движения (например, планеты) не соответствует закону сохранения энергии.

Ускорение у Кориолиса завышено в 2 раза ошибкой при взятии производной вектора переносной скорости, из–за отрыва от физики.

Сила Кориолиса (при движении в трубке) количественно верна, но не обоснована физически (жирный шрифт наш). Половина силы Кориолиса, действительно, является силой инерции: при приближении к центру вращения тело тормозится трубкой, при удалении – разгоняется. Другая же половина силы обусловлена действием центробежной силы, точнее, её проекцией на направление, перпендикулярное радиусу движения в плоскости орбиты (о ней будем говорить далее). Эта половина силы не даёт ускорения – не позволяет трубка. Сила Кориолиса – это сумма двух различных сил».

Мы не согласны с авторами «Махолета» в их трактовке статической части поддерживающей силы, т.к. она обусловлена не центробежной силой, а именно внешней тангенциальной закручивающей силой, поддерживающей вращение на неизменном уровне и истинной силой Кориолиса. Не трубка нейтрализует половину поддерживающей силы Кориолиса, т.к. в отсутствие истинной силы Кориолиса ничто в принципе не мешает такой силе ускорить и саму трубку, а истинная сила Кориолиса.

Более подробно работа авторов из Удмуртии рассматривается в главе 10.

Другая версия, по некоторым параметрам сходная с нашей точкой зрения изложена в статье КОРИОЛИСОВА СИЛА И КОРИОЛИСОВО УСКОРЕНИЕ Канарёва Ф.М. от 2.06.2010 г., источник: SciTecLibrary.ru. (E–mail: kanphil@mail.ru). Более подробно работа Канарёва также рассмотрена в главе 10.

На сегодняшний день мы узнали только о двух авторах, которые в той или иной степени близки нам по взглядам на явление Кориолиса. Однако ни у кого из них нет чёткого представления о физическом смысле явления Кориолиса. Во всяком случае, в своих работах они его чётко не излагают.

Канарев Ф. М. сам ещё не определился, какую версию он считает правильной. Его статья больше похожа на размышления вслух, чем на научную работу. Интуиция учёного подсказывает ему, что что–то не так в классической модели поворотного движения. Однако пока что он не нашёл правильного решения проблемы. Не вяжется у Канарёва и с направлениями силы и ускорения Кориолиса. Поэтому мы с нетерпением ждём продолжения его статьи, в котором он намеревался представить коррекцию кинематики сложного движения.

PS: Недавно продолжение статьи появилось, но к сожалению в нём Канарев Ф. М. допускает всё те же ошибки, что и в первой статье. Физический смысл явления Кориолиса так и остался не раскрытым. Анализ новой статьи см. в главе 10.

Удвоение силы вовсе не обязательно связано с удвоением ускорения. Причина удвоения классической силы (напряжения) Кориолиса прояснена в нашей версии явления Кориолиса. В классическом поворотном движении с постоянной угловой скоростью удвоение классического напряжения Кориолиса обеспечивает истинная сила Кориолиса, которую приходится компенсировать при сохранении неизменной угловой скорости. Канарёв не разделяет силу Кориолиса на статическую и динамическую часть. В этом отношении нашими единомышленниками являются только авторы «Махолета, да и то только в некотором приближении.

К сожалению, никто из авторов этих двух работ не представил своего видения природы явления Кориолиса на уровне его физического механизма. Тем не менее, обнадеживает тот факт, что не всех устраивает классическая версия поворотного движения, т.е. основания для сомнений в ее непогрешимости все же есть. Люди, для которых истина важнее опасений навредить своей репутации подвергая сомнению прописные с точки зрения официальной науки истины и важнее званий, все–таки не скрывают своего видения противоречий классической физики и в частности в поворотном движении. Таким образом, мы, по крайней мере, не одиноки в своих сомнениях.

Совпадение величины силы (напряжения) Кориолиса с ее классическим теоретическим значением, рассчитанным по неправильному линейному приращению можно, конечно же, отнести и к случайным совпадениям. Однако для большинства авторов, повторяющих классический вывод, это фактически банальная подгонка под ответ. Кто–то однажды допустил ошибку, приняв на веру абсурдную классическую динамику вращательного движения, а потом под напряжение Кориолиса, которое возможно было подтверждено экспериментально, подвели теорию. При этом все последующие авторы в своих выводах учитывали лишь авторитет предшественников и исторически сложившееся научное мнение.

Ошибка определения ускорения поворотного движения прочно вошла в математический метод дифференцирования криволинейного движения по приращению его координат. А может быть, она только закрепила это ошибочное дифференцирование. Приращение скорости это всегда приращение расстояния, пройденного с ускорением, но приращение координат не всегда соответствует приращению этого расстояния. Поэтому вторая производная от приращения координат не всегда соответствует реальному геометрическому ускорению криволинейного движения. Классическое дифференцирование приращения криволинейного движения этого не учитывает, что диктует необходимость пересмотра динамики и кинематики сложного движения в классической физике.

 

4.4. Второй вариант проявления ускорения Кориолиса. Относительная скорость направлена вдоль окружности перпендикулярно радиусу вращающейся системы.

Второй вариант классического ускорения Кориолиса, которое якобы проявляется при перпендикулярном радиусу поворотном движении, описан, например, в упомянутой выше работе Матвеева А. Н. «Механика и теория относительности» 3–е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003г. (см. фотокопию в главе 4.1). На странице (404) Матвеев пишет: «В случае движения точки перпендикулярно радиусу, т.е. по окружности, относительная скорость (v отн.= ω отн. * r), а угловая скорость вращения точки в неподвижной системе координат (ω + ω отн.), где ω – угловая скорость вращающейся системы координат. Для абсолютного ускорения получаем следующее выражение:

аабс.  = (ω + ω отн.)2 * r = ω 2 r + ω отн. 2 * r + 2 * ω * ω отн. * r              (66.6)»

Матвеев утверждает, что первый член выражения (66.6) – (ω2 * r) определяет непосредственно переносное ускорение, второй член (ω отн. 2 * r) определяет относительное ускорение, а третий член (2 * ω * ω отн. * r) выражения (66.6) с классической точки зрения и представляет собой ускорение Кориолиса.

Надо полагать, что в общем случае переносное и относительное движения, как при радиальном, так и при перпендикулярном радиусу относительном движении могут быть как равномерными, так и переменными. В последнем случае задача определения силы и ускорения Кориолиса значительно усложняется, т.к. появляется необходимость учитывать мгновенные значения радиуса и угловой скорости. Поэтому классическая физика рассматривает частный случай поворотного движения, в котором для упрощения вывода формулы силы и ускорения Кориолиса переносное и относительное движения считаются постоянными.

Затем, якобы переходя к мгновенным, а по сути, к средним значениям параметров переносного и относительного движения, классическая физика распространяет полученные теоретические зависимости на общий случай проявления ускорения Кориолиса. Например, поясняя переносное ускорение при выводе ускорения Кориолиса «простым вычислением», (см. фотокопию выше, стр. 405, ф. 66.14) Матвеев подчёркивает, что речь в его выводе идет только о равномерном вращении:

«Таким образом, переносное ускорение является центростремительным (напомним, что угловая скорость вращения считается постоянной)».

Ранее в отношении формулы (66.6) на странице (404) Матвеев так же утверждает:

«Все ускорения в (66.6) направлены на центр вращения».

Это означает, что все составные вращения, которые появляются в формуле разложения центростремительного ускорения по формуле квадрата суммы двух чисел, представляют собой равномерные вращательные движения. Следовательно, во втором варианте речь у Матвеева идёт исключительно только о равномерном вращательном движении, в котором, прежде всего именно с классической точки зрения, нет и не может быть никакого ускорения Кориолиса. Следовательно, называть два центростремительных ускорения (2 * ω * ω отн. * r = 2 * ω * V отн.) ускорениями Кориолиса, по меньшей мере, некорректно.

В нашей модели равномерного вращательного движения центростремительное ускорение представляет собой академическую величину, в которой обобщены все ускорения, проявляющиеся на микроуровне в пределах одного цикла формирования сложного по своей реальной физической структуре вращательного движения. Однако на уровне его обобщённой кинематики центростремительное ускорение в классической физике всегда считалось ускорением единого элементарного движения с элементарным линейным центростремительным ускорением. Но в составе элементарного ускорения элементарного движения нет, и не может быть никаких составных частей. На то оно и элементарное движение.

Причём, как это ни странно для классической физики, ускорения Кориолиса по второму варианту в равномерном вращательном движении нет и на микроуровне. Как показано в главе (3) преобразование величины линейной скорости по направлению на микроуровне равномерного вращательного движения осуществляется в соответствии с механизмом отражения, который неразрывно связан с радиальным движением. Поэтому в равномерном вращательном движении на микроуровне присутствует ускорение Кориолиса только по первому варианту при радиальном относительном движении.

Тело может двигаться относительно центра вращения непосредственно с абсолютной линейной скоростью (Va) или через промежуточные звенья в виде вращающихся со своей переносной скоростью (Vе) круговых направляющих. Тогда абсолютное вращение (Vа) может быть достигнуто в виде суммы скоростей всех направляющих и самого тела. Однако сколько бы ни было промежуточных звеньев все они обеспечивают единую связь конечного тела с центром вращения (единое связующее тело), единую центростремительную силу для конечного тела и его единое центростремительное ускорение. 

Рис. 4.4.1

Для человечка, изображённого на рисунке (4.4.1) нет никаких других вращений кроме его собственного абсолютного вращения с абсолютной линейной окружной скоростью (Vа) и с абсолютным центростремительным ускорением (aабс = ацс). Он не может расслоиться на разные вращения (ω 2 * r), (ωотн. 2 * r), а так же на два неких промежуточных вращения (2 * ω * ω отн. * r), которые якобы связывают два первых вращения и считаются в классической физике ускорением Кориолиса. И тем более на бесконечное множество вращений и поворотных движений с бесконечным множеством ускорений Кориолиса в случае множества промежуточных звеньев.

Пока все скорости ещё невелики, то связующим телом вращающегося с абсолютной скоростью человечка является совокупность всех механически связанных между собой при помощи тяготения промежуточных звеньев Земля – тележка – человечек. Однако когда сумма скоростей (Vе) и (Vотн.), т.е. абсолютная скорость человечка (Vа) достигнет величины первой космической скорости, человечек отрывается от тележки и соответственно от Земли. При этом механическая связь всех промежуточных звеньев теряет свой физический смысл.

Остаётся только единая гравитационная связь человечка с центром вращения, которая обеспечивала абсолютное движение и на до космических скоростях. Следовательно, в единой связи (единое связующее тело) не имеют физического смысла и ускорения всех придуманных классической физикой гипотетических Кориолисов, как нет их и в обычном равномерном вращательном движении без промежуточных звеньев.

Выведенному на орбиту спутнику нет никакого дела до скорости вращения Земли, которая, безусловно, помогает ракете носителю достичь первой космической скорости на этапе выведения спутника на орбиту. Но и после её достижения и потери спутником механической связи с Землёй его центростремительное ускорение не перестанет быть центростремительным ускорением и не изменится, даже если вращение Земли вдруг гипотетическим образом остановится и даже если Земля вдруг начнёт вращаться в обратную сторону. Это означает, что никакого ускорения Кориолиса в составе центростремительного ускорения нет!

В классической физике существует излюбленный прием пояснения сущности физических явлений с точки зрения субъективных наблюдателей, находящихся в той или иной системе отсчета. Пусть, например, по внутренней или внешней поверхности равномерно вращающегося цилиндра равномерно движется закрытая капсула. С точки зрения наблюдателя находящегося в капсуле, абсолютно не важно, с какой относительной скоростью его капсула движется относительно поверхности цилиндра и с какой переносной скоростью вращается сам цилиндр. Он просто не видит этих промежуточных звеньев. А ощущает он только одно абсолютное центростремительное ускорение в виде своего увеличившегося веса.

Никакими доступными наблюдателю в капсуле способами, он не сможет определить на какие составные части технически и абстрактно математически может быть разделено его абсолютное равномерное вращение. О техническом расслоении абсолютного вращения может знать только внешний наблюдатель. Однако и он, поразмыслив, легко придет к выводу, что физическая сущность установившегося равномерного вращательного движения не зависит от того, каким способом оно достигнуто. А вот наблюдатель, движущейся в такой же закрытой капсуле вдоль радиуса переносного вращения без труда различит постоянное ускорение Кориолиса и изменяющееся центростремительное ускорение.

Следовательно, по логике классических же наблюдателей ускорение Кориолиса должно возникать только при радиальном относительном движении. Никакого ускорения Кориолиса в центростремительном ускорении равномерного вращательного движения нет, и не может быть в принципе.  В противном случае классической физике придётся пересмотреть свои взгляды, как на центростремительное ускорение равномерного вращательного движения, так и на ускорение Кориолиса.

Это совершенно разные явления природы, которые не могут иметь одинаковый физический смысл и одинаковое название, даже, несмотря на то, что, как показано в главе 4.1 в физических механизмах их формирования есть однотипные физические элементы в виде элементарных отражений. Даже из одинаковых кирпичей могут быть сложены совершенно разные здания.

Как известно, при относительном движении вдоль оси вращающейся системы ускорение Кориолиса не проявляется, поскольку соседние точки траектории имеют одинаковую скорость, как по величине, так и по направлению. С этим трудно не согласиться. Но не менее трудно не согласиться и с тем, что при относительном движении, перпендикулярном радиусу все соседние точки на абсолютной круговой траектории также имеют одинаковую по абсолютной величине линейную скорость. Изменяется только её направление. Однако изменение направления линейной скорости происходит исключительно только с центростремительным ускорением, о чём, не задумываясь ни на секунду, вам скажет каждый школьник!



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 131; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.63.61 (0.044 с.)