Вольтамперная характеристика тиристора 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вольтамперная характеристика тиристора



Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 18.3. Она имеет несколько участков:

Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.

В точке 1 происходит включение тиристора.

Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.

Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).

В точке 2 через прибор протекает минимальный удерживающий ток Ih.

Участок между 0 и 4 описывает режим обратного запирания прибора.

Участок между 4 и 5 — режим обратного пробоя.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 18.3 тем, что кривая в третьей четверти графика повторяет участки 0—3 симметрично относительно начала координат.

 

По типу нелинейности ВАХ тиристор относят к S-приборам.

 

 

 
Рисунок 18.3 - Вольт-амперная характеристика тиристора

 

 


Режим обратного запирания

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

- Лавинный пробой.

- Прокол обеднённой области.

 

     
Рисунок 18.4 - Режим обратного запирания тиристора (участок 4 на рис.18.3)

 

 


В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 18.4). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2). (область 4 на рис.18.3).

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Двухтранзисторная модель

Для объяснения характеристик прибора в режиме прямого запирания используется двухтранзисторная модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 18.5 для триодного тиристора. Центральный переход действует как коллектор дырок, инжектируемых переходом J1, и электронов, инжектируемых переходом J3. Взаимосвязь между токами эмиттера IE, коллектора IC и базы IB и статическим коэффициентом усиления по току α1 p-n-p транзистора также приведена на рис. 18.5, где IСо— обратный ток насыщения перехода коллектор-база.

 
Рисунок 18.5 - Двухтранзисторная модель триодного тиристора, соединение транзисторов и соотношение токов в p-n-p транзисторе.

 


Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 18.5 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток Ig втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс.

 

Ток базы p-n-p транзистора равен IB1 = (1 — α1)IA — ICo1. Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α2 равен

 IC2 = α2IK + ICo2.                                                                                  (18.1)

Приравняв IB1 и IC2, получим

 (1 — α1)IA — ICo1 = α2IK + ICo2.

Так как IK = IA + Ig, то

                                                                            (18.2)

Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α1 + α2 < 1, ток IA мал. (Коэффициенты α1 и α2 сами зависят от IA и обычно растут с увеличением тока) Если α1 + α2 = 1, то знаменатель дроби обращается в нуль и происходит прямой пробой (или включение тиристора). Следует отметить, что если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 — в прямом. При таких условиях пробой не происходит, так как в качестве эмиттера работает только центральный переход и регенеративный процесс становится невозможным.

Можно рассмотреть процесс включения тиристора (режим прямого запирания) на примере смещения энергетических зон.

Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 18.6

 

Рисунок 18.6 - Энергетическая зонная диаграмма в режиме прямого смещения: состояние равновесия, режим прямого запирания и режим прямой проводимости
 

 

В равновесии обеднённая область каждого перехода и контактный потенциал определяются профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 — в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: VAK = V1 + V2 + V3. По мере повышения напряжения возрастает ток через прибор и, следовательно, увеличиваются α1 и α2. Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком напряжении тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 18.6,в), и падение напряжения VAK = (V1 — |V2| + V3) приблизительно равно сумме напряжения на одном прямосмещенном переходе и напряжения на насыщенном, транзисторе.

 

Режим прямой проводимости

Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диоду…

Классификация тиристоров

тиристор диодный (доп. название " динистор ") - тиристор, имеющий два вывода

тиристор диодный, не проводящий в обратном направлении

тиристор диодный, проводящий в обратном направлении

тиристор диодный симметричный (доп. название "диак")

тиристор триодный (доп. название " тринистор ") - тиристор, имеющий три вывода

тиристор триодный, не проводящий в обратном направлении (доп. название "тиристор")

тиристор триодный, проводящий в обратном направлении (доп. название "тиристор-диод")

тиристор триодный симметричный (доп. название "триак", неоф. название " симистор ")

тиристор триодный асимметричный

запираемый тиристор (доп. название "тиристор триодный выключаемый")



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 35; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.64.132 (0.01 с.)