Тема: Введение. Понятие информации. Информация и данные. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема: Введение. Понятие информации. Информация и данные.



Лекция № 1

Тема: Введение. Понятие информации. Информация и данные.

Понятие информации

Вопрос о сущности информации возникает у учителей и преподавателей, когда надо ученику объяснить, почему в учебниках такое разнообразие, информация – это свойство материи, сигнал, знания, байт, символ, смысл, данные и вообще неопределяемое понятие.

Информацию можно определить как набор сообщений об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности и не полноты знаний.

Термин информация происходит от латинского informatio, что означает разъяснение, осведомление, изложение. Сообщение в свою очередь является формой представления информации в виде речи, текста, изображения, графиков, таблиц, видеоизображения, звука и т. п.

В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, людьми и машинами, живой и не живой природой. Данное определение не претендует на полноту и законченность так как информация относится к наиболее фундаментальным понятиям таким как материя, поле, энергия, которые лишь описываются и трактуются.

Информация, как любой объект или явления, имеет три составляющие: сущность, определение и термин.

Рассмотрим гипотезу, основанную на разделении понятия «информация» на два: «данные» и «смысл», т.к. смысл в этой паре является главным, то смысл, назовем «информацией».

С точки зрения философии информация – наиболее общее понятие наряду с материей. Можно сказать, что она отражает организацию материи. При этом информация не только пассивно характеризует структуру материи, но и способна активно создавать и воспроизводить эту структуру. Например, любой созданный человеком объект первоначально существует в виде идеи (образа) в голове его творца, а свойства самого человека в значительной степени запрограммированы информацией, хранящейся в его геноме.

“Антиподом” информации, характеризующей стуктурированность материи является энтропи я, которая отражает ее неупорядоченность (“хаоc”).

Упорядоченность и хаос (и, соответственно, энтропия и информация) в видимой вселенной непрерывно перетекают друг в друга: например, строить – означает упорядочивать, а разрушать – вносить беспорядок. Но “есть время собирать камни и время разбрасывать камни”. Исходя из этого существует предположение о “законе сохранения” количества информации во Вселенной. Однако, есть и прямо противоположная точка зрения: след всего, что происходит, неуничтожим на “тонких уровнях” организации материи, так что информация постоянно накапливается.

Лекция № 2

Тема: Виды и формы представления информации. Свойства информации.

      Формы представления информации

Для человека, как существа общественного, принципиально необходимо обмениваться информацией с себе подобными. Именно способность накапливать, передавать и воспринимать опыт других и сделала его Человеком. При этом по мере развития культуры люди изобретали все более изощренные и разнообразные средства хранения, передачи, а затем и обработки информации.

Классификация основных форм представления информации, используемых человеком для ее передачи и хранения.

Лекция № 3

Пример. При расчете заработной платы каждая запись включает в себя код (табельный номер) работника, код подразделения, в котором он работает, занимаемую должность и т.п. В соответствии с этими кодами можно произвести разные группировки.

· Сортировка, с помощью которой упорядочивается последовательность записей;

· Вычисления, включающие арифметические и логические операции. Эти операции, выполняемые над данными, дают возможность получать новые данные;

· Укрупнение или агрегирование, служащее для уменьшения количества данных и реализуемое в форме расчетов итоговых и средних значений.

Хранение данных. Многие данные на уровне операционной деятельности необходимо сохранить для последующего использования либо здесь же. Либо на другом уровне. Для их хранения создаются базы данных.

Создание отчетов (документов). В информационной технологии обработки данных необходимо создавать документы для руководства и работников фирмы, а также для внешних партнеров. При этом документы могут создаваться как по запросу или в связи с проведенной фирмой операцией, так и периодически в конце каждого месяца, квартала или года.

2. Обработка аналоговой и цифровой информации

По принципу действия вычислительные машины делятся на три большие класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).

Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЭВМ), но точность решения задач очень низкая (относительная погрешность 2-5%). На АВМ наиболее эффективно решать математические задачи, содержащие диференциальные уравнения, не требующие сложной логики.

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Контрольные вопросы:

1. Какие основные методы обработки информации существуют?

2. Какие машины называются аналоговыми?

3. Какие машины называются цифровыми?

4. Какие машины называются гибридными?

5. Дайте определение ЭВМ.

 

 

Лекция № 4

Тема: Системы счисления. Непозиционные и позиционные системы счисления.

1. Позиционные и непозиционные системы счисления

Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная для практического применения система счисления должна обеспечивать:

· возможность представления любого числа в рассматриваемом диапазоне величин;

· единственность представления (каждой комбинации символов должна соответствовать одна и только одна величина);

· простоту оперирования числами.

Все системы представления чисел делят на позиционные и непозиционные.

Непозиционная система счисления – система, для которой значение символа не зависит от его положения в числе.

Для их образования используют в основном операции сложения и вычитания. Например, система с одним символом-палочкой встречалась у многих народов. Для изображения какого-то числа в этой системе нужно записать количество палочек, равное данному числу. Эта система неэффективна, так как запись числа получается длинной. Другим примером непозиционной системы счисления является римская система, использующая набор следующих символов: I, V, X, L, C, D, M и т. д. В этой системе существует отклонение от правила независимости значения цифры от положения в числе. В числах LX и XL символ X принимает два различных значения: +10 – в первом случае и –10 – во втором случае.

Позиционная система счисления – система, в которой значение символа определяется его положением в числе: один и тот же знак принимает различное значение. Например, в десятичном числе 222 первая цифра справа означает две единицы, соседняя с ней – два десятка, а левая – две сотни.

Любая позиционная система характеризуется основанием. Основание (базис) позиционной системы счисления – количество знаков или символов, используемых для изображения числа в данной системе.

Лекция № 5

Лекция № 6

Тема: Перевод чисел из заданной системы в другую.

Методы перевода чисел

Числа в разных системах счисления можно представить следующим образом:

 

 

 

 

где 

Значит, в общем виде задачу перевода числа из системы счисления с основанием q 1 в систему счисления с основанием q 2 можно представить как задачу определения коэффициентов bj нового ряда, изображающего число в системе с основанием q 2. В такой постановке задачу перевода можно решить подбором коэффициентов bj.

     Перевод чисел делением на основание новой системы

Перевод целых чисел осуществляется делением на основание q 2 новой системы счисления, правильных дробей – умножением на основание q 2. Действия деления и умножения выполняются по правилам q 1 -арифметики. Перевод неправильных дробей осуществляется раздельно по указанным правилам, результат записывается в виде новой дроби в системе с основанием q 2.

Пример 1. Перевести десятичное число A = 6110 в систему счисления с q = 2.

 

   61  | 2

60    30  | 2

b 0 = 1      30   15  | 2

       b 1 = 0    14          7 | 2

                b 2 = 1        6   3 | 2

                            b 3 = 1        2   1 = b5

                                     b 4 = 1

Ответ: 6110 = 1111012.

Табличный метод перевода

В простейшем виде табличный метод заключается в следующем: имеется таблица всех чисел одной системы с соответствующими эквивалентами из другой системы; задача перевода сводится к нахождению соответствующей строки таблицы и выбору из нее эквивалента. Такая таблица очень громоздка и требует большой емкости памяти для хранения.

Другой вид табличного метода заключается в том, что имеются таблицы эквивалентов в каждой системе только для цифр этих систем и степеней основания (положительных и отрицательных); задача перевода сводится к тому, что в выражение ряда (1) для исходной системы счисления надо поставить эквиваленты из новой системы для всех цифр и степеней основания и произвести соответствующие действия (умножения и сложения) по правилам q 2 -арифметики. полученный результат этих действий будет изображать число в новой системе счисления.

Пример 2. Перевести десятичное число A = 113 в двоичную систему счисления, используя таблицу эквивалентов цифр и степеней основания

(q 2 = 2).

 

Таблица 1 – Таблица эквивалентов

Десятичное число Двоичное число
100 0001
101 1010
102 110 0100

 

Решение. Подставив значения двоичных эквивалентов десятичных цифр и степеней основания в (3), получим

A = 113 = 1 · 102 + 1 · 101 + 3 · 100 = 001 · 1100100 + 0001 · 1010 + 0011 · 0001 = 11100012.

Ответ: 11100012.

ЗАДАЧИ

1.3.1. Представить в форматах Н и F числа -12710 и 12710

12710=1*26+1*25+1*24+1*23+1*22+1*21+1*20=0111 11112.

А2Н=0000 0000 0111 11112,  А2F=0000 00 7 F16.

-12710=- (1*26+1*25+1*24+1*23+1*22+1*21+1*20)= -0111 11112.

А2Н=1000 0000 0111 11112,  А2F=8000 00 7 F16.

 

1.3.2. Определить, какие из следующих шестнадцатиричных чисел положительные, а какие отрицательные: 9754, 157, ADF, 7654AD и DFEA.

Знак числа определяется по первой цифре: если она меньше 8 (1000), то число положительное, если значение от 8 до F, то отрицательное. Таким образом, получаем 9754<0, 157>0, ADF<0, 7654AD>0 и DFEA<0.

Представление чисел в формате с плавающей точкой

Для расширения диапазона рассматриваемых чисел по сравнению с естественной формой чисел используется формат с плавающей точкой или нормальная форма. Любое число в этом формате представляется, как А= ±maE±Pа,

где ma  - мантисса числа А; Е – основание системы счисления; ±Ра- порядок. Все эти величины – двоичные числа без знака. На рис. 2 приведен формат числа в нормальной форме. Старший разряд (нулевой) содержит знак мантиссы, первый разряд – знак порядка, 6 разрядов, со второго по седьмой, определяют значение порядка, а остальные – мантиссу. Нормальная форма может быть представлена коротким форматом Е (4 байта), длинным форматом D (8 байт) и повышенной точности (16 байт). Во всех этих формах представления первый байт остается постоянным, изменяется только область, отведенная под мантиссу.

 

Знак ma                Знак Ра                    Порядок        Мантисса      

Знак ma Знак Ра Ра ma

                         0          1            2    …          7 8                  31

Рис. 2. Нормальная форма числа

При таком представлении чисел 0 может быть записан 64 разными способами, т.к. для этого подходят любые значения порядков 0*20=0*21=…=0*263. А другие числа могут иметь много различных форм записи. Например, 153610=3*29=6*28=…=768*21.

Для однозначного представления чисел мантиссу нормализуют, т.е. накладывают ограничение 1/Е≤m<1.

Это ограничение означает, что мантисса представляет собой правильную дробь и содержит хотя бы одну значащую цифру после запятой, отличную от нуля. Нормализованным представлением нуля является такое представление, при котором во всех разрядах находятся нули.

При использовании нормальной формы для части компьютеров характерно смещение оси порядков в область положительных значений. В этом случае арифметические действия производятся над порядками, не имеющими знака. В нормальной форме под значение порядка отводится 7 разрядов, один из них знаковый. Таким образом, значение порядка может лежать в интервале 26≤Р≤26-1, т.е. от -64 до 63.

Сместив порядок на 26=64=4016, мы получаем интервал возможных значений 0≤Р≤27-1=127. Смещенный порядок на 4016 называется характеристикой и вычисляется как Рx=P+40.

Если характеристика равна 40, то порядок равен 0; если характеристика меньше 40, то порядок отрицателен; если больше – то положителен.

ЗАДАЧИ

1.3.3. Представить в нормальной сетке Е числа 32001,510  и -32001,510

 

Представим числа в шестнадцатиричном коде 32001,510=7 D 01,816 и

- 32001,510. =-7 D 01,816

Затем найдем нормализованные мантиссы и характеристики.

m =7 D 01,816 m =0,7 D 018,                                                                                                                                                                                                                                                                                      

при этом характеристика становится равной Рx=40+4=44

Знак m       Рx                                                m

0 100 0100 0111 1101 0000 0001 1000 0000 447 D 0180 > 0

  m = - 7 D 01,8 16 m=-0, 7 D 018,

при этом характеристика становится равной Рx=40+4=44

Знак m       Рx                                                m

1 100 0100 0111 1101 0000 0001 1000 0000 С47 D 0180 <0

Контрольные вопросы:

1. Как осуществляется перевод чисел делением на основание новой системы.

2. Как пользуются при табличном методе перевода чисел?

3. Что понимают под форматом данных?

4. Как представляется число в формате с фиксированной точкой?

5. Как представляется число в формате с плавающей точкой?

 

 

Лекция № 7

Тема: Меры информации: синтаксическая, семантическая, прагматическая.

Информация — это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состояниях, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

 Информатика рассматривает информацию как связанные между собой сведения, изменяющие наши представления о явлении или объекте окружающего мира. С этой точки зрения информацию можно рассматривать как совокупность знаний о фактических данных и зависимостях между ними.

 В процессе обработки информация может менять структуру и форму. Признаком структуры являются элементы информации и их взаимосвязь. Формы представления информации могут быть различны. Основными из них являются: символьная (основана на использовании различных символов), текстовая (текст — это символы, расположенные в определенном порядке), графическая (различные виды изображений), звуковая.

 В повседневной практике такие понятия, как информация и данные, часто рассматриваются как синонимы. На самом деле между ними имеются различия. Данными называется информация, представленная в удобном для обработки виде. Данные могут быть представлены в виде текста, графики, аудио-визуального ряда. Представление данных называется языком информатики, представляющим собой совокупность символов, соглашений и правил, используемых для общения, отображения, передачи информации в электронном виде.

Информационная коммуникация – это пути процессы, обеспечивающие передачу сообщений от источника информации к её потребителю. Для потребителей информации важной характеристикой является адекватность.

Адекватность информации – определенный уровень соответствия, создаваемого с помощью полученной информации образа реальному образу, процессу или явлению.

 Одной из важнейших характеристик информации является ее адекватность. От степени адекватности информации зависит правильность принятия решения.

 Адекватность информации может выражаться в трех формах: синтаксической, семантической и прагматической.

Синтаксическая адекватность отображает формально-структурные характеристики информации, не затрагивая ее смыслового содержания. На синтаксическом уровне учитываются тип носителя и способ представления информации, скорость ее передачи и обработки, размеры кодов представления информации, надежность и Точность преобразования этих кодов и т. д. Информацию, рассматриваемую с таких позиций, обычно называют данными.

Семантическая адекватность определяет степень соответствия образа объекта самому объекту. Здесь учитывается смысловое содержание информации. На этом уровне анализируются сведения, отражаемые информацией, рассматриваются смысловые связи. Таким образом, семантическая адекватность проявляется при наличии единства информации и пользователя. Эта форма служит для формирования понятий и представлений, выявления смысла, содержания информации и ее обобщения.

Прагматическая адекватность отражает соответствие информации цели управления, реализуемой на ее основе. Прагматические свойства информации проявляются при наличии единртва информации, пользователя и цели управления. На этом уровне анализируются потребительские свойства информации, связанные с практическим использованием информации, с соответствием ее целевой функции деятельности системы.

 Каждой форме адекватности соответствует своя мера количества информации.

Синтаксическая мера информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту. На этом уровне объем данных в сообщении измеряется количеством символов в этом сообщении. В современных ЭВМ минимальной единицей измерения данных является бит — один двоичный разряд. Широко используются также более крупные единицы измерения: байт, равный 8 битам; килобайт, равный 1024 байтам; мегабайт, равный 1024 килобайтам, и т. д.

Семантическая мера информации используется для измерения смыслового содержания информации. Наибольшее распространение здесь получила тезаурусная мера, связывающая семантические свойства информации со способностью пользователя принимать поступившее сообщение. Тезаурус — это совокупность сведений, которыми располагает пользователь или система. Максимальное количество семантической информации потребитель получает при согласовании ее смыслового содержания со своим тезаурусом, когда поступающая информация понятна пользователю и несет ему ранее не известные сведения. С семантической мерой количества информации связан коэффициент содержательности, определяемый как отношение количества семантической информации к общему объему данных.

Прагматическая мера информации определяет ее полезность, ценность для процесса управления. Обычно ценность информации измеряется в тех же единицах, что и целевая функция управления системой.

Контрольные вопросы:

1. Что такое информация?

2. Что понимают под адекватностью информации?

3. Дайте информационной коммуникации.

4. Что отображает синтаксическая адекватность?

5. Что определяет семантическая адекватность?

6. Дайте определение прагматической адекватности.

 

Лекция № 8

Лекция № 9

Тема: Понятие количества информации. Единицы измерения информации.

1. Измерение информации в быту (информация как новизна).

Разные люди, получив одно и тоже сообщение, по-разному оценивают количество информации, содержащееся в нем. Оно зависит от того, насколько ново это сообщение для получателя. При этом подходе трудно выделить критерии, по которым можно было вывести единицу измерения информации.

2. Измерение информации в технике (информация – любая хранящаяся, обрабатываемая или передаваемая последовательность знаков).

А) В технике часто используют способ определение количества информации называемый объемным. Он основан на подсчете числа символов в сообщении, т.е. связан с его длиной и не зависит от содержания.

Б) В вычислительной технике (ВТ) применяют две стандартные единицы измерения:

В теории информации количеством информации называют числовую характеристику сигнала, не зависящую от его формы и содержания, и характеризующую неопределенность, которая исчезнет после получения сообщения в виде данного сигнала. В этом случае количество информации зависит от вероятности получения сообщения о том или ином событии.

Для абсолютно достоверного события (событие обязательно произойдет, поэтому его вероятность равна 1) количество информации в сообщении о нем равно 0. Чем неожиданнее событие, тем больше информации он несет.

Лишь при равновероятных событиях: ответ «да» или «нет», несет 1 бит. Единицы измерения количества информации. Для количественного выражения любой величины необходимо определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы — килограмм и так далее. Аналогично, для определения количества информации необходимо ввести единицу измерения.

За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Такая единица названа «бит».

Если вернуться к опыту с бросанием монеты, то здесь неопределенность как раз уменьшается в два раза и, следовательно, полученное количество информации равно 1 биту.

Минимальной единицей измерения количества информации является бит, а следующей по величине единицей является байт, причем 1 байт = 23 бит = 8 бит.

В информатике система образования кратных единиц измерения количества информации несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10n, где n = 3, 6, 9 и так далее, что соответствует десятичным приставкам Кило (103), Мега (106), Гига (109) и так далее.

Компьютер оперирует числами не в десятичной, а в двоичной системе счисления, поэтому в кратных единицах измерения количества информации используется коэффициент 2n.

 Так, кратные байту единицы измерения количества информации вводятся следующим образом:

 1 Кбайт = 210 байт = 1024 байт;

 1 Мбайт = 210 Кбайт = 1024 Кбайт;

 1 Гбайт = 210 Мбайт = 1024 Мбайт.

Количество возможных событий и количество информации. Существует формула, которая связывает между собой количество возможных событий N и количество информации I: N=2I.

 По этой формуле можно легко определить количество возможных событий, если известно количество информации. Например, если мы получили 4 бита информации, то количество возможных событий составляло: N = 24= 16.

 Наоборот, для определения количества информации, если известно количество событий, необходимо решить показательное уравнение относительно I. Например, в игре «Крестики-нолики» на поле 8x8 перед первым ходом существует возможных события (64 различных варианта расположения «крестика»), тогда уравнение принимает вид: 64 = 2I.

 Так как 64 = 26, то получим: 26 = 2I.

 Таким образом, I = 6 битов, то есть количество информации, полученное вторым игроком после первого хода первого игрока, составляет 6 битов.

Контрольные вопросы:

1. Что называется измерением информации?

2. Какие способы определения количества информации существуют?

3. Дайте определение количества информации.

4. какие единицы измерения информации существуют?

 

Лекция № 10

Лекция № 11

Лекция № 12

Лекция № 13

Лекция № 14

Тема: Алгоритмы кодирования. Теорема Котельникова и ее применение.

Лекция № 15

Квантование по уровню

При квантовании по уровню непрерывное множество значений функции x(t) заменяется множеством дискретных значений. Для этого в диапазоне непрерывных значений функции x(t) выбирается конечное число дискретных значений этой функции (дискретных уровней) и в процессе квантования значение функции x(t) в каждый момент времени заменяется ближайшим дискретным значением. В результате квантования образуется ступенчатая функция xg(t).

Квантование по уровню практически может осуществляться двумя способами. При первом способе квантования мгновенное значение функции x(t) заменяется меньшим дискретным значением. При втором способе квантования мгновенное значение функции x(t) заменяется ближайшим меньшим или большим дискретным значением в зависимости от того, какое из этих значений ближе к мгновенному значению функции. В этом случае переход ступенчатой функции с одной ступени на другую происходит в те моменты, когда первоначальная непрерывная функция x(t) пересекает середину между соответствующими соседними дискретными уровнями.

Расстояние между дискретными соседними уровнями называется интервалом или шагом квантования

Различают равномерное квантование по уровню, при котором шаг квантования постоянен, и неравномерное квантование по уровню, когда шаг квантования непостоянен. На практике преимущественное применение получило равномерное квантование в связи с простотой его технической реализации.

Квантование по времени

Рассмотрим сущность понятия дискретизации сигнала x(t) применительно к детерминированной функции.

Дискретизация сигнала x(t) связана с заменой промежутка изменения независимой переменной некоторым множеством точек, т.е. операции дискретизации соответствует отображение

x(t) x(ti)

x(t) – функция, описывающая сигнал

x(ti) – функция, описывающая сигнал, полученный в результате дискретизации,

то есть в результате дискретизации исходная функция x(t) заменяется совокупностью отдельных значений x(ti). По значениям x(ti) можно восстановить исходную функцию x(t) с некоторой погрешностью. Функция, полученная в результате восстановления (интерполяции) по значениям x(ti), называется воспроизводяще й и обозначается через V (t).

При обработке сигналов дискретизация по t должна производится таким образом, чтобы по отсчетным значениям x(ti) можно было получить воспроизводящую функцию V(t), которая с заданной точностью отображает исходную функцию x(t).

При дискретизации сигналов приходится решать вопрос о том, каков должен быть шаг дискретизации:

=ti-ti-1

Контрольные вопросы:

1. Что понимают под линией связи?

2. Какое устройство называется декодером?

3. Какое устройство называется решающим?

4. Какое устройство называются декодирующим?

5. Что называют шагом квантования?

6. Дайте определение квантования по уровню.

7. Дайте определение квантования по времени.

 

 

Лекция № 16

Лекция № 17

Лекция № 18

Лекция № 19

Лекция № 20

Тема: Кодирование символьной и числовой информации.

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Кодирование символьной (текстовой) информации.

Основная операция, производимая над отдельными символами текста - сравнение символов.

При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.

Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.

Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.

Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.

Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.

Лекция № 21

Лекция № 22

Лекция № 23

Лекция № 24

Тема: Архивация информации. Программы-архиваторы: виды и функци и

 

Архиваторы

Одним из наиболее распространенных видов системных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации — это процесс преобразования информации, хранящейся в файле, в результате которого уменьшается ее избыточность, соответственно, требуется меньший объем Памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как одни, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл, или архив.

Архивный файл — это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т. д.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и, соответственно, стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Под степенью сжатия понимают отношение размеров сжатого файла и исходного, выраженное в процентах.

Степень сжатия зависит от используемой программы сжатия, метода сжатия и типа исходного файла. Лучше всего сжимаются файлы графических образов, текстовые файлы, файлы данных, степень сжатия которых может достигать 5 — 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей — 60 — 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) — помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде.

Разархивацияия (распаковка) — процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память.

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами.

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том — это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько носителей.

Лекция № 1

Тема: Введение. Понятие информации. Информация и данные.

Понятие информации

Вопрос о сущности информации возникает у учителей и преподавателей, когда надо ученику объяснить, почему в учебниках такое разнообразие, информация – это свойство материи, сигнал, знания, байт, символ, смысл, данные и вообще неопределяемое понятие.

Информацию можно определить как набор сообщений об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности и не полноты знаний.



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 56; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.218.147 (0.214 с.)