Типы и конструкции печей непрерывного действия. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Типы и конструкции печей непрерывного действия.



 

При установившемся технологическом процессе термообработки для увеличения производительности предпочтительно применять непрерывно действующие печи. Конструкции печей непрерывного действия (рис.2.18) различаются в основном механизмами перемещения нагреваемых изделий в рабочем пространстве печи.

В ЭПС непрерывного действия изделия загружаются в печь и, непрерывно или периодически перемещаясь по длине электропечи, нагреваются и выходят с другого конца нагретыми до определенной температуры. Температуры различных точек рабочего пространства в ЭПС непрерывного действия могут быть различными или одинаковыми, однако они не изменяются во времени.

 

ЭЛЕКТРИЧЕСКИЕ ПЕЧИ СОПРОТИВЛЕНИЕ НЕПРЕРЫВНОГО ДЕЙСТВИЯ
КОНВЕЙЕРНЫЕ
ТОЛКАТЕЛЬНЫЕ
РУЧЬЕВЫЕ
КАРУСЕЛЬНЫЕ
БАРАБАННЫЕ
РОЛЬГАНГОВЫЕ
ПРОТЯЖНЫЕ
ТУННЕЛЬНЫЕ

 


Рис. 2.18. Основные виды печей сопротивления непрерывного действия.

 

Электропечи сопротивления непрерывного действия целесообразно применять в тех случаях, когда имеется установившийся технологический процесс термообработки и требуется провести термообработку большого количества идентичных изделий, т.е. в массовых и крупносерийных производствах (рис.2.19). Методические печи должны быть снабжены тем или иным приспособлением для перемещения деталей. Эти печи сложнее печей периодического действия, но зато имеют значительно большую производительность при тех же габаритах и обеспечивают идентичность режима термообработки.

Входящие в агрегат установки должны иметь одинаковую производительность, так как производительность агрегата в целом определяется той входящей в его состав установкой, которая имеет самую малую производительность. Такие автоматизированные агрегаты могут входить в состав поточных и автоматических линий. Электропечь непрерывного действия, как правило, имеет несколько тепловых зон с самостоятельным регулированием температуры, что дает возможность создавать различные температурные режимы.

 

Рис. 2.19. Схемы печей непрерывного действия:

а – конвейерная с горизонтальным конвейером; б – конвейерная с подвесным конвейером; в – толкательная; г – рольганговая; д – протяжная вертикальная; е – карусельная.  1 – каркас печи с футеровкой; 2 – нагреваемые тела (загрузка); 3 – дверца; 4 – загрузочные проёмы; 5 – конвейер; 6 – барабан конвейера с приводом; 7 – подвеска; 8 – направляющие; 9 – толкатель с приводом; 10 – загрузочный стол; 11 – разгрузочный стол; 12 – рольганг с приводом; 13 – ролики или барабаны; 14 – размоточный механизм; 15 – намоточный механизм с приводом; 16 – кольцевой под; 17 – вал с приводом.

 

Длина зоны обычно равна 1,5 — 2 м, а в тех случаях, когда не требуется обеспечивать заданный график нагрева, длина зоны может быть увеличена до 2,5 — 3 м, и наоборот, когда необходимо точно выдержать скорость нагрева изделий, длину зоны следует уменьшить до 0,8-1,2 м.

В случае необходимости ЭПС непрерывного действия могут комплектоваться камерами охлаждения. Эти печи могут работать с контролируемыми атмосферами. При этом с загрузочной и разгрузочной сторон устанавливают так называемые шлюзовые камеры или со стороны разгрузки устанавливается специальный разгрузочный лоток, входящий в рабочую среду закалочного бака, тем самым образуя гидравлический затвор.

Электропечь непрерывного действия с рабочей температурой до 700°С часто оборудуют вентиляторами. Нагреватели в электропечах устанавливают на своде, поду и боковых (реже торцевых) стенках. В основном конструкции ЭПС непрерывного действия определяются механизмом перемещения изделий по электропечи.

Конвейерные электропечи (рис.2.19а и б.) являются наиболее распространенным типом ЭПС непрерывного действия. Они применяются в основном для термообработки мелких и средних по габаритам и массе изделий крупносерийного и массового производства, например колец подшипников. Под печи представляет собой конвейер – полотно, натянутое между двумя валами, которые приводятся в движение специальными двигателями. Нагреваемые изделия укладываются на конвейер и передвигаются на нем через рабочее пространство печи.

Конвейерная лента может быть выполнена плетеной из нихромовой сетки, штампованных пластин и соединяющих их прутков, а также для тяжелых нагреваемых изделий – из штампованных или литых цепных звеньев.

Конвейер размещается целиком в камере печи и не остывает. Однако валы конвейера находятся в очень тяжелых условиях и требуют водяного охлаждения. Поэтому часто концы конвейера выносят за пределы печи. В этом случае значительно облегчаются условия работы валов, но возрастают потери теплоты в связи с остыванием конвейера у разгрузочных и загрузочных концов. Нагреватели в конвейерных печах чаще всего размещаются на своде или в поду под верхней частью ленты конвейера, реже – на боковых стенках.

Конвейерные нагревательные печи в основном применяются для нагрева сравнительно мелких деталей до температуры около 1200 К.

Для нагрева и мелких, и крупных изделий до 1150°С могут быть использованы толкательные электропечи (рис.2.19в). На поду этих ЭПС установлены жароупорные направляющие в виде труб, рельсов или роликового пода, вдоль которых перемещаются поддоны с нагреваемыми изделиями. Расположенный на загрузочном торце печи толкатель вдвигает в электропечь с загрузочного стола очередной поддон с изделиями, и так как поддоны расположены вплотную друг к другу, то приходят в движение все ранее загруженные в печь поддоны.

После подхода к разгрузочному концу ЭПС поддон либо сам скатывается по наклонному рольгангу, либо захватывается толкателем и направляется им на разгрузочный стол.

Основными преимуществами толкательных ЭПС являются достаточно хорошая герметичность, относительная простота, отсутствие транспортирующих механизмов в зоне высоких температур.

Недостатком этих ЭПС является наличие массивных поддонов, что ограничивает длину электропечей до 10 — 12 м из-за невозможности перемещения поезда поддонов большей длины. Кроме того, на нагрев поддонов затрачивается до 25 % полезной теплоты. Определенная трудность имеется также в возврате поддонов от разгрузочного конца ЭПС к загрузочному. Стойкость поддонов также невелика — она исчисляется несколькими месяцами, и стоимость поддонов существенно удорожает себестоимость термообработки. В ряде случаев при нагреве крупных изделий правильной формы удается укладывать изделия вплотную, непосредственно на направляющие и тем самым обойтись без поддонов; при этом исключаются недостатки, имеющиеся в ЭПС с использованием поддонов.

Рольганговые электропечи, передвижение изделий в которых осуществляется рольганговым подом (рис.2.19г), являются наиболее универсальными среди ЭПС непрерывного действия. В рольганговых печах могут быть обработаны изделия, разнообразные по форме и массе. Увеличение длины электропечи не сказывается на надежности ее работы.

Для перемещения по электропечи изделия загружаются непосредственно на рольганг или в специальные жароупорные поддоны, которые помещаются на рольганг. Рольганговые ЭПС могут комплектоваться загрузочным столом или загрузочным механизмом, камерой загрузки, камерой охлаждения, закалочным баком, разгрузочным столом или разгрузочным механизмом, разгрузочной камерой, кантователем. Движение роликов, как правило, осуществляется общим наружным приводом.

В карусельных электропечах (рис.2.19е) транспортирующим узлом служит под, выполненный в виде кольца. Под вращается, перемещая изделия в печном пространстве. Карусельные ЭПС используются для низкотемпературного отпуска (до250°С) стальных изделий, для закалки (до 850°С) мелких стальных изделий, для нагрева под закалку перед штамповкой (до 1150°С) и для нагрева (до 1250°С) под прокатку в металлургии. Эти ЭПС возможно применять на температуры до 1300°С при значительных массах механизмы находятся вне зоны высоких температур. Недостатком этого вида ЭПС являются определенные трудности, связанные с механизацией загрузки и выгрузки обрабатываемых изделий, так как загрузочный и разгрузочный проемы находятся рядом. По этой же причине эти ЭПС неудобно использовать в поточных линиях.

Карусельные ЭПС для сравнительно низких температур имеют под, выполненный в виде металлоконструкции, расположенной внутри печного пространства. Для легких загрузок под имеет одну опору, вал которой выводится из печного пространства и приводится во вращение приводом, как правило, с применением системы зубчатых передач.

В ЭПС для закалки мелких изделий вращающийся под выполняется с ковшами. Одна сторона ковша прикрепляется на шарнире к вращающейся конструкции пода, другая скользит по кольцеобразной неподвижной направляющей. Против разгрузочного лотка ЭПС неподвижная направляющая обрывается, и ковш опрокидывается, а изделия, находящиеся в нем, высыпаются в закалочный 6aк.

Для загрузки и выгрузки изделий карусельные ЭПС могут иметь один проем, если охлаждение нагретых обрабатываемых изделий при их разгрузке не сказывается на их качестве (например, при отпуске и отжиге), а также могут иметь два проема с огнеупорной перегородкой между ними, если ЭПС предназначены, например, для закалки или нагрева под штамповку, прессование или прокатку.

Вращение пода может быть непрерывным или прерывистым. Если на вращающемся поду расположены нагревательные элементы, то электропитание к ним подводится через скользящие контакты.

Барабанные электропечи (рис.2.20) предназначены в основном для обработки изделий с максимальным размером до 80 мм, а также для нагрева порошкообразных материалов. Перемещение нагреваемых изделий или порошка через электропечь осуществляется во вращающемся барабане-муфеле. Внутри муфеля находятся непрерывные ребра, расположенные по винтовой линии с определенным шагом по всей длине. В этом случае при каждом обороте муфеля обрабатываемые изделия перемещаются на один виток. Возможен барабан и без ребер для передвижения изделий. В этом случае необходимо расположить барабан наклонно под углом 1 — 5°.  

 

Рис. 2.20. Барабанная электропечь с контролируемой атмосферой:

1-механизм загрузки; 2 – загрузочный патрубок; 3 – нагреватели; 4 – кожух; 5 – крышка; 6 – муфель; 7 – футеровка; 8 – привод муфеля; 9 – закалочный бак; 10 – газоподвод; 11 – воздухоподвод; 12 – зонт; 13 – разгрузочная воронка; 14 – свеча.

 

Преимущества барабанных ЭПС в сравнении с другими ЭПС непрерывного действия состоят в том, что они имеют сравнительно высокие технико-экономические показатели из-за отсутствия затрат теплоты на нагрев вспомогательных транспортных средств; легко встраиваются в автоматические и поточные линии; не требуют каких-либо дополнительных транспортных приспособлений; легко герметизируются и тем самым приспособлены для использования их с контролируемыми атмосферами; в этих ЭПС обеспечивается высокое качество термообработки, так как благодаря непрерывному перемешиванию все детали находятся в 

Недостатками этих ЭПС являются сравнительно низкая производительность, обусловленная невозможностью обеспечения полного заполнения барабана, а также ограниченная длина барабана. Кроме того, в этих ЭПС имеется повышенный расход дорогих дефицитных жароупорных сталей.

Максимальная рабочая температура барабанных ЭПC 1000°С, она ограничена работоспособностью металлического муфеля. Барабанные ЭПС, как правило, имеют съемные своды. При использовании этих ЭПС с контролируемыми атмосферами применяются герметичные загрузочные и разгрузочные устройства.

 Барабанные ЭПС используются в поточных линиях для комплексной обработки изделий. Так, широкое применение нашли закалочноотпускные и цементационно-закалочно-отпускные агрегаты.

Протяжные электропечи (рис.2.21.) предназначены для нагрева проволоки, ленты, тонкого листа, труб большой протяженности. В процессе обработки нагреваемый металл непрерывно протягивается через печь с помощью размоточно-намоточных механизмов.

Протяжные ЭПС бывают горизонтальные и вертикальные.

В целях получения более высокой производительности электропечей и сокращения их длины ЭПС делаются многорядными, т. е. через одну печную камеру протягивается одновременно несколько рядов проволоки, ленты или труб. Для увеличения рядности ЭПС выполняются многоэтажными — с печными камерами, расположенными одна над другой. Кроме того, используется также многократное прохождение проволоки или ленты (многоходность) через одну или несколько рядом стоящих ЭПС.

 

Рис. 2.21. Протяжная электропечь для термообработки проволоки:
1 — ролики; 2 — футеровка; 3 — муфель; 4 — нагреватели; 5 — крышка;
6 — кожух электропечи с ручьевым подом

 

Преимуществом протяжных ЭПС является высокая равномерность нагрева и как следствие этого — высокое качество обработки в сравнении с нагревом в бухтах или рулонах. Недостатком этих ЭПС является их сравнительно большая длина.

Кроме термообработки проволоки, ленты и других изделий из черных и цветных металлов протяжные ЭПС нашли весьма широкое применение для сушки и полимеризации лаков или пластмасс. Особым видом протяжных ЭПС являются башенные печи. Они применяются для термообработки при большей производительности сравнительно с горизонтальными печами. Скорость движения ленты в таких ЭПС достигает 10 м/с при ширине ленты до 1 м.

Для обеспечения нормального прохождения проволоки ленты, труб через горизонтальную протяжную печь на практике часто используют направляющие трубы (в случае обработки проволоки или труб) или муфели (в случае обработки ленты). Направляющие трубы или муфели расположены в печном пространстве, и через них протягиваются обрабатываемые изделия.

Ручьевые электропечи (рис.2.22.) предназначаются в основном для закалки стальных изделий массового производства, например колец подшипников, втулок, звеньев траков и т. п.

Основным преимуществом ручьевых ЭПС является отсутствие затрат теплоты на нагрев вспомогательных транспортирующих устройств; возможность поштучной механизированной выдачи изделий из печи, что позволяет согласовать работу ЭПС с подачей на закалочные прессы. Вследствие простой конструкции эти ЭПС весьма надежны в эксплуатации.

Недостатками ручьевых ЭПС являются возможность использования их только для изделий цилиндрической формы с размерами, соответствующими размерам ручья подовой плиты, а также трудности в освобождении печной камеры от обрабатываемых изделий при прекращении подачи их к ЭПС или остановках в работе. Привод ручьевых ЭПС бывает гидравлическим и электромеханическим. Под электропечи выполняется из металла или керамики. Он бывает в виде труб, плит с желобами, направляющих рельсов, что определяется геометрией обрабатываемых изделий. Как правило, электропечи бывают многоручьевыми.

 

Туннельные электропечи.

 

Рис. 2.22. Схема электропечи с ручьевым подом Рис. 2.23. Схема туннельной электропечи

 

Главным преимуществом туннельных ЭПС (рис. 2.23.) является то, что их металлоконструкции (ходовая часть тележек и рельсы) отделены футеровкой тележки от рабочей камеры печи (зоны наибольших температур). Кроме того, эти ЭПС могут иметь весьма большую производительность.

Недостатком этих ЭПС является наличие футерованных тележек, которые обладают большой массой и, следовательно, требуют больших затрат на их нагрев; для возврата тележек требуются специальные механизмы и площади. Кроме того, частые нагревы и охлаждения тележек приводят к растрескиванию их футеровки и преждевременному выходу из строя.

Туннельные ЭПС бывают однорядными и многорядными. Применяются они в основном в огнеупорной промышленности для обжига керамики до 1300°С, хотя в отдельных случаях используются для сушки при температуре до 300°С сварочных электродов. Для улучшения технико-экономических показателей этих ЭПС используется рекуперация теплоты. Так, в трехрядных ЭПС в крайних рядах загрузки перемещаются в направлении, противоположном движению в центральном ряду. Начальная стадия нагрева загрузки происходит в крайних рядах, конечная — в центральном. В этом случае часть теплоты от изделий, находящихся в центральном ряду, передается изделиям, находящимся в крайних рядах. При этом одновременно упрощается передача тележек от выхода их из электропечи к входу. Темп перемещения тележек в крайних рядах в 2 раза меньше, чем в центральном.

Высокотемпературные электропечи. В последние десятилетия в связи с развитием новых областей техники и созданием для их нужд новых материалов с определенными заданными свойствами резко возросло применение высокотемпературных печей сопротивления — вакуумных и с нейтральными (инертными) газовыми средами.

    В высокотемпературных печах сопротивления в основном применяются следующие технологические процессы:

спекание изделий из тугоплавких и химически активных материалов.

термическая обработка тугоплавких металлов и сплавов;

получение монокристаллов и их термическая обра­ботка;

плавка и рафинирование тугоплавких металлов и сплавов.

Основные отличия конструкций высокотемпературных печей от обычных следующие:

Герметичное исполнение кожуха печи, рассчитанного на атмосферное (для вакуумных печей) и часто — на давление, значительно превышающее атмосферное (1—5 МПа), для печей вакуумно-компрессорных, работающих с нейтральными газами.

Конструкция нагревателей основывается на приме­нении тугоплавких металлов (молибдена, вольфрама, тантала) и графита; питание нагревателей осуществляется пониженным напряжением (из-за опасности пробоя) от специальных понижающих трансформаторов с регулированием вторичного напряжения.

Кладка печи для облегчения откачки из нее газов выполняется из легко дегазируемых материалов или же роль тепловой изоляции выполняют системы металлических экранов.

 Наличие вместо обычных проемов и уплотнений вакуумных затворов и вакуумных уплотнений.

Наличие откачной системы, состоящей из вакуумных насосов, трубопроводов, вентилей, затворов.

Вакуумные печи периодического действия изготовляются серийно и индивидуально; по типу конструкций они разделяются на камерные, шахтные, колпаковые и элеваторные.

Вакуумные высокотемпературные печи непрерывного действия выполняются таких конструктивных типов, которые позволяют осуществлять перемещение изделий механизмами, расположенными вне рабочего пространства печи.

В наибольшей степени подходят для работы в условиях вакуума и высоких температур толкательные печи и печи с выдвижным подом. Применяются также туннельные печи (с перемещающимися вдоль печной камеры футерованными тележками) и протяжные — для термообработки проволоки и ленты, снабженные динамическими уплотнениями.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 194; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.163.58 (0.042 с.)