Стек протоколов технологии 100VG-AnyLAN 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Стек протоколов технологии 100VG-AnyLAN



Структура стека протоколов технологии 100VG-AnyLAN согласуется с архитектурными моделями OSI/ISO и IEEE, в которых канальный уровень разделен на подуровни. Как видно из рис. 49, стек протоколов технологии 100VG-AnyLAN состоит из подуровня доступа к среде (Media Access Control, MAC), подуровня, независящего от физической среды (Physical Media Independent, PMI), и подуровня, зависящего от физической среды (Physical Media Dependent, PMD).

 

         

                                                                                                                                                                                           Таблица 13

Характеристика 10Base-T 100VG-AnyLAN 100Base-T
Топология - - -
Максимальный диаметр сети 2500 м 8000 м 412 м
Каскадирование концентраторов Да; 3 уровня Да; 5 уровней Два концентратора максимум
Кабельная система - - -
UTP Cat 3,4 100 м 100 м 100 м
UTP Cat 5 150 м 200 м 100 м
STP Type 1 100 м 100 м 100 м
Оптоволокно 2000 м 2000 м 412 м
Производительность - - -
При длине сети 100 м 80% (теоретическая) 95% (продемонстрированная) 80% (теоретическая)
При длине сети 2500 м 80% (теоретическая) 80% (продемонстрированная) Не поддерживается
Технология - - -
Кадры IEEE 802.3 Да Да Да
Кадры 802.5 Нет Да Нет
Метод доступа CSMA/CD Demand Priority CSMA/CD + подуровень согласования (Reconciliation sublayer)

Рис. 49. Структура стека протоколов технологии 100VG-AnyLAN

Функции уровня MAC

 

Функции уровня МАС включают реализацию протокола доступа Demand Priority, подготовки линии связи и формирования кадра соответствующего формата.

Метод Demand Priority (приоритетный доступ по требованию) основан на том, что узел, которому нужно передать кадр по сети, передает запрос (требование) на выполнение этой операции концентратору. Каждый запрос может иметь либо низкий, либо высокий приоритеты. Высокий приоритет отводится для трафика чувствительных к задержкам мультимедийных приложений.

Высокоприоритетные запросы всегда обслуживаются раньше низкоприоритетных. Требуемый уровень приоритета кадра устанавливается протоколами верхних уровней, не входящими в технологию 100VG-AnyLAN, например Real Audio, и передается для отработки уровню МАС.

Как показано на рис. 50, концентратор уровня 1 постоянно сканирует запросы узлов, используя алгоритм кругового опроса (round-robin). Это сканирование позволяет концентратору определить, какие узлы требуют передачи кадров через сеть и каковы их приоритеты.

В течение одного цикла кругового сканирования каждому узлу разрешается передать один кадр данных через сеть. Концентраторы, присоединенные как узлы к концентраторам верхних уровней иерархии, также выполняют свои циклы сканирования и передают запрос на передачу кадров концентратору. Концентратор нижнего уровня с N портами имеет право передать N кадров в течение одного цикла опроса.

 

Рис. 50. Функции уровней PMI и PMD

Каждый концентратор ведет отдельные очереди для низкоприоритетных и высокоприоритетных запросов. Низкоприоритетные запросы обслуживаются только до тех пор, пока не получен высокоприоритетный запрос. В этом случае текущая передача низкоприоритетного кадра завершается и обрабатывается высокоприоритетный запрос. Перед возвратом к обслуживанию низкоприоритетных кадров должны быть обслужены все высокоприоритетные запросы. Для того чтобы гарантировать доступ для низкоприоритетных запросов в периоды высокой интенсивности поступления высокоприоритетных запросов, вводится порог ожидания запроса. Если у какого-либо низкоприоритетного запроса время ожидания превышает этот порог, то ему присваивается высокий приоритет.

На рис. 50 показан пример цикла кругового опроса. Сначала предположим, что все порты передали запросы нормального приоритета и что в начальный момент времени корневой концентратор начал круговой опрос. Порядок обслуживания портов будет следующим: 1-1 (уровень 1 - порт 1), 2 -1, 2-3, 2-N, 1-3, 1-N.

Теперь предположим, что узлы 1-1, 2-3 и 1-3 выставили высокоприоритетные запросы. В этом случае порядок обслуживания будет таким: 1-1, 2-3, 1-3, 2-1, 2-N, 1-N.

Процедура подготовки линии Link Training "обучает" внутренние схемы концентратора и узла приему и передаче данных, а также проверяет работоспособность линии, соединяющей концентратор и узел.

Во время подготовки линии концентратор и узел обмениваются серией специальных тестовых кадров. Данная процедура включает функциональный тест кабеля, дающий возможность убедиться в том, что кабель правильно соединяет контакты разъемов и информация может быть корректно передана между концентратором и узлом.

Процедура подготовки также позволяет концентратору автоматически узнать информацию об узлах, подключенных к каждому порту. Кадры, получаемые концентратором от узла во время подготовки, содержат данные о типе устройства (конечный узел, концентратор, мост, маршрутизатор, анализатор протокола и т.п.), режиме работы (нормальный или монитор), адресе узла, присоединенного к данному порту.

Процедура подготовки инициируется узлом, когда узел или концентратор впервые включаются или при первом присоединении узла к концентратору. Узел или концентратор могут потребовать выполнения процедуры подготовки при обнаружении ошибочной ситуации.

Уровень МАС получает кадр от уровня LLC и добавляет к нему адрес узла-источника, дополняет поле данных байтами-заполнителями до минимально допустимого размера, если это требуется, а затем вычисляет контрольную сумму и помещает ее в соответствующее поле. После этого кадр передается на физический уровень.

Функции уровня PMI

 

Функции, не зависящие от физической среды, представленные на рис. 50, включают квартетную канальную шифрацию, кодирование 5B/6B, добавление к кадру преамбулы, начального и конечного ограничителей и передачу кадра на уровень PMD.

Процесс квартетного распределения по каналам состоит в последовательном делении байтов МАС-кадра на порции данных по 5 бит (квинтеты), а также в последовательном распределении этих порций между четырьмя каналами, как это показано на рис. 51.

 

Рис. 50. Функции уровней PMI и PMD

Каждый из 4-х каналов представляет собой одну витую пару: канал 0 - пару, образованную контактами 1 и 2, канал 1 - пару 3 - 6, канал 2 - пару 4 - 5, канал 3 - пару 7 - 8. Двухпарные спецификации физического уровня PMD используют затем схему мультиплексирования, преобразующую 4 канала в 2 или 1.

 

Рис. 51. Распределение квинтетов по 4-м каналам

Шифрация данных состоит в случайном "перемешивании" квинтетов данных с целью исключения комбинаций из повторяющихся единиц или нулей. Перемешивание производится с помощью специальных устройств - скремблеров. Случайные наборы цифр уменьшают излучение радиоволн и взаимные наводки в кабеле.

Кодирование по схеме 5B/6B - это процесс отображения "перемешанных" квинтетов в заранее определенные 6-битовые коды. Этот процесс создает сбалансированные коды, содержащие равное количество единиц и нулей, что обеспечивает гарантированную синхронизацию приемника при изменениях входного сигнала.

Кодирование 5B/6B обеспечивает также контроль за ошибками при передаче, так как некорректные квинтеты, содержащие больше трех единиц или больше трех нулей, легко обнаружить.

На рис. 52 приведен пример квинтетов данных, зашифрованных и преобразованных в символы 5B/6B. Поскольку существует только 16 сбалансированных символов, 32 комбинации, содержащиеся в квинтете, используют для своего представления два 6-ти битных символа, используемых по очереди для соблюдения баланса постоянного тока.

Преамбула, начальный и конечный ограничители добавляются в каждый канал для корректной передачи данных через сеть.

Функции уровня PMD

 

Функции зависимого от физической среды уровня PMD включают мультиплексирование каналов (только для двух витых пар или оптоволокна), копирование NRZ, операции передачи сигналов по среде и контроль статуса физической связи.

 

 

Рис. 52. Пример шифрации и кодирования квинтетов

 

Технология 100VG-AnyLAN поддерживает следующие типы физической среды:

  • четырех парную неэкранированную витую пару;
  • двух парную неэкранированную витую пару;
  • двух парную экранированную витую пару;
  • одномодовый или многомодовый оптоволоконный кабель.

Далее будут рассмотрены детали спецификации PMD для четырех парной неэкранированной витой пары.

Рис. 53 иллюстрирует применения NRZ кодирования, использующего для представления единиц потенциал высокого уровня, а для представления нулей - потенциал низкого уровня.

Рис. 53. NRZ кодирование

Спецификация 4UTP, использующая четырех парную неэкранированную витую пару, использует тактовый генератор с частотой 30 МГц для передачи данных со скоростью 30 Мб/с по каждому из четырех каналов, что в сумме дает 120 Мб/c кодированных данных. Приемник получает кодированные данные со скоростью 30 Мб/с по каждому каналу и преобразует их в поток исходных данных со скоростью 25 Мб/с, что в результате дает пропускную способность в 100 Мб/с.

Использованный метод представления данных в кабеле позволяет технологии 100VG-AnyLAN работать на голосовом кабеле (Voice-Grade) категории 3. Максимальная частота результирующего сигнала на кабеле не превышает 15 МГц, так как метод NRZ очень эффективен в отношении спектра сигналов. При тактовой частоте в 30 МГц частота 15 МГц генерируется только при передаче кодов 10101010, что является для спектра результирующего сигнала наихудшим случаем. При передаче других кодов частота сигнала будет ниже 15 МГц.

Операции передачи данных на четырех парном кабеле используют как полнодуплексный, так и полудуплексный режимы (рис. 54).

Рис. 54. Полнодуплексные и полудуплексные операции

Полнодуплексные операции используются для одновременной передачи в двух направлениях - от узла к концентратору и от концентратора к узлу - сигнальной информации о состоянии линии. Сигнальная информация от концентратора идет по парам 1-2 и 3-6, а сигнальная информация от узла идет по парам 4-5 и 7-8.

Полудуплексные операции используются для передачи данных от концентратора узлу и от узла концентратору по всем четырем парам.

Сигнализация о статусе связи, осуществляемая в полнодуплексном режиме, использует два низкочастотных сигнала, обозначаемые как тон 1 (Tone 1) и тон 2 (Tone 2).

Тон 1 генерируется путем передачи с частотой 30 МГц по очереди кодов, состоящих из 16 единиц, и кодов, состоящих из 16 нулей. Результирующий сигнал имеет частоту примерно 0.9375 МГц.

Тон 2 генерируется путем передачи с частотой 30 МГц по очереди кодов, состоящих из 8 единиц, и кодов, состоящих из 8 нулей. Результирующий сигнал имеет частоту примерно 1.875 МГц.

Взаимодействие между концентратором и узлом происходит путем параллельной передачи по двум парам комбинации из указанных двух тонов.

В табл. 14 приведены значения возможных 4-х комбинаций тонов.

                                                                                             Таблица 14

Комбинация тонов Значение при приеме узлом Значение при приеме концентратором
1 - 1 Простой (Idle) Простой (Idle)
1 - 2 Поступление кадра Запрос на передачу кадра с нормальным приоритетом
2 -1 Зарезервировано Запрос на передачу кадра с высоким приоритетом
2 - 2 Запрос на инициализацию процедуры подготовки линии Запрос на инициализацию процедуры подготовки линии

Состояние простоя означает, что концентратор или узел не имеют кадров, ожидающих передачи.

Состояние "поступление кадра" означает, что на данный порт может быть передан кадр. Узел должен прекратить передачу сигнальных тонов по каналам 2 и 3 для того, чтобы быть готовым принять кадр.



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 46; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.70.203 (0.015 с.)