Тема 7.3. Електроустаткування установок електроерозійної обробки           


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 7.3. Електроустаткування установок електроерозійної обробки          



               матеріалів.

1. Призначення, принцип дії і загальна будова електроерозійного верстату.

Електроерозійна обробка сталі, твердих сплавів та других струмопровідних матеріалів являється однім з різновидів електротехнології – методів розмір – ної обробки, в основу яких покладено використання термічної, хімічної або комбінованої дії електричного струму. Вона використовується в тих випад – ках, коли обробка матеріалів звичайними механічними способами різання пов’язана з великими труднощами, а підчас і взагалі неможлива.

Електроерозійна обробка заснована на ефекті корисного знімання металу з заготовки в результаті теплової дії коротких за часом уніполярних імпульсів– електричної енергії. Ця енергія виділяється в каналі електричного розряду між поверхнею заготовки (деталі) і електродом – інструментом, зануреним в рідке середовище (гас, солярові або машинні масла, дистильовану і технічну воду). Слідуючи один за одним через проміжок електрод – заготовка імпульсні розряди з амплітудою струму в сотні і тисячі ампер виплавляють і випаровують мікропорції матеріалу заготовки. Краплі і пари розплавленого матеріалу завдяки залишковому тиску в області розряду викидаються за її межи і захолонюють в робочій рідині в вигляді дрібних частинок, які не осаджуються на електроді-інструменті. Останній, таким чином, отримує можливість втручатися в заготовку. При електроерозійній обробці немає необхідності в інструментах більш твердих, ніж матеріал заготовки. Електрод-інструмент при електроерозійній обробці служить для підведення імпульсів електричної енергії до заготовки. Механічної дії на деталь він не створює. Операції, які виконуються таким способом, получили назву копіювально-прошивних.             

Відрізняють два види електроерозійної обробки: електроімпульсну, при якій використовується дугова форма електричного розряду, і електроіскрову, для який типічною є іскрова форма розряду. При електроіскровій обробці імпульсами (з енергією імпульсу від сотих частин до одиниць джоулів і тривалістю Ті <10– 4 с) великої частоти (до десятків і сотень кілогерц) деталь, як правило, являється анодом (так названа пряма полярність). Електроімпульсна обробка виконується більш широкими імпульсами (з енергією від одиниць до декількох десятків джоулів і Ті >10– 4 с) меншої частоти (до сотень і тисяч герц) і звичайно при зворотний полярності, коли деталь являється катодом.

Продуктивність електроерозійної обробки – кількість металу, який знімається з деталі в одиницю часу і зношення електроду-інструменту залежать від потужності, частоти і тривалості імпульсів, їх полярності та форми, складу робочої рідини, матеріалу деталі і інструменту. Тому для кожного конкретного випадку обробки є свій оптимальний режим, тобто найкраще сполучення даних факторів.

Електроерозійна обробка використовується при виготовленні деталей для прошивання отворив (круглого і складного профілю), прорізання канавок, пазив и шліців, виготовлення матриць штампів, обробки порожнин прес-форм, виготовлення і профілювання твердосплавних різців, шліфування площин постійних магнітів і т. д. Електроімпульсна обробка продуктивніша і економічно вигідніша за електроіскрову завдяки використанню більш потужних імпульсів. В свою чергу електроіскрова обробка дозволяє отримати більш високу, точність і чистоту поверхні.

Для виконання електроерозійної обробки використовують електроерозійні верстати (рис. 7.7.).

 

                                                                     Рис. 7.7. Зовнішній вигляд електро -

                                                                                           ерозійного верстату мод. 183.

 

                                                                                   1 – основа;

                                                                                   2 – ванна з робочою рідиною;

                                                                                   3 – робочій стіл;

                                                                                   4 – кронштейн стійки;

                                                                                   5 – електродотримач;

                                                                                   6 – напрямні поперечного супорту;

                                                                                   7 – поперечний супорт з робочою го-

                                                                                          ловкою;

                                                                                   8 – поздовжній супорт;

                                                                                   9 – напрямні стійки;

                                                                                   10 – стійка;

                                                                                   11 – пульт керування.

 

                                                                                     На столі верстату встановлюються

                                                                                  деталі розміром 1100×400×120 мм.

                                                                                     Механізм подачі з електроприводом

                                                                                  знаходиться в робочій головці і забез -     

                                                                                  печує рух подачі електроду – інструме -

                                                                                  нту по поздовжній осі головки.

 

 

2. Електроустаткування електроерозійного верстата.

1. Генератори імпульсів.

Для нормального ходу процесу електроерозійної обробки необхідно щоб між електродом – інструментом і виробом проходив стабільний імпульсний струм і попереджував ся його перехід в безперервний дуговий розряд.

Формування імпульсів струму здійснюється за допомогою спеціальних генераторів імпульсів, схеми яких представлені на рис. 7.8.

 

  

 

 

Рис. 7.8. Принципові схеми генераторів імпульсів електроерозійних верстатів.

ДПС – джерело постійного струму; Е – електрод; Д – деталь; МГІ – машинний генератор імпульсів; ДС – джерело струму; ЗГ – задавальний генератор; ПП – проміжний підсилювач; СБ – силовий блок; ПБ – підпалювальний блок; Др – діод розділювальний.

 

В релаксаційному генераторі типу RC (рис. 7.8, а) від джерела постійного струму ДПС з напругою 100—250 В через струмообмежувальний опір R конденсатор С запасає енергію. Напруга на конденсаторі підвищується до Uпр, при якому відбувається пробій проміжку між електродом-інструментом Е і деталлю Д. Енергія, яка запасена в конденсаторі, виділяється в проміжку Е–Д в вигляді імпульсу струму Іі. По мірі розряду конденсатора напруга на йому падає і через деякий час становиться менше значення, при якому може підтримуватися провідний стан проміжку Е–Д. Струм Іі швидко зменшується і припиняється. Одразу ж починається заряд конденсатора, і описаний процес повторюється з частотою, яка залежить від параметрів схеми. Регулювання частоти слідування і параметрів імпульсів здійснюється шляхом зміни ємності конденсатора С (підключенням різних конденсаторів). Генератор RC дає імпульси великої частоти (до 200 Гц)  шпаруватості. Шпаруватість q імпульсу – відношення інтервалу часу між сусідніми імпульсами до часу тривалості імпульсу. Середня потужність генераторів типу RC — від 0,05 до 10 кВт. Основні їх переваги — простота і надійність.

На рис. 7.8,б приведена принципова схема машинного генератора імпульсів типу МГІ. Імпульс енергії подається на проміжок Е –Д через струмообмежувальний опір R від спеціального індукторного генератора МГІ на частоту 400 Гц з щітковим комутатором для отримання уніполярної напруги на виході генератора. Генератори такого типу дають потужні імпульси (десятки кіловат) з малою шпаруватістю і використовуються для режимів чорнової обробки. Інші конструкції машинних індукторних генераторів типу МГІ розраховані на більш високі частоти.

Розповсюдження получили також широкодіапазонні генератори імпульсів на транзисторах (рис. 7.8, в). Задавальний частоту імпульсів генератор ЗГ через проміжний підсилювач ПП відкриває на заданий час силовий транзисторний блок СБ (транзистори працюють в режимі ключа). Блок СБ приєднаний до джерела живлення ДС (випрямляча) з напругою 50 – 60 В. Одночасно підпалювальний блок ПБ видає короткий імпульс з напругою амплітудою 150—300 В (підпалювальний імпульс), який пробиває проміжок Е–Д. Тепер по проміжку Е–Д по колу від джерела струму ДС через блок СБ і розділювальний діод Др проходить імпульс струму заданої форми, амплітуди і тривалості. Широкодіапазонні транзисторні генератори імпульсів типу ШГІ забезпечують середню потужність на виході до 4 кВт при частотах от 0,1 до 440 кГц при будь якій необхідній шаруватості імпульсів.

Автоматичні регулятори (автоматичні електроприводи подачі).

В процесі електроерозійної обробки по мірі видалення матеріалу деталі і зношення електроду-інструменту відбувається збільшення проміжку Е – Д, тому необхідно безперервне наближення електрода до деталі. Воно забезпечується за допомогою автоматичного регулятора подачі електрода, який підтримує визначену величину проміжку Е – Д для заданого режиму обробки.

На рис. 7.9. показані електричні схеми автоматичних регуляторів.

Рис. 7.9. Схеми автоматичних регуляторів електроерозійних верстатів.

На рис. 7.9, а) схема з безпосереднім включенням (без підсилювача). Для приводу подачі електроду-інструменту використовується двигун постійного струму з незалежним збудженням. Якір двигуна Д включений в діагональ моста, плечі якого створені потенціометром Rрег, струмо-обмежувальним резистором R генератора імпульсів типу RC і розрядним проміжком                                 Е–Д. Обмотка збудження двигуна ОЗД живиться від джерела постійного струму генератора імпульсів. Двигун Д спеціального виконання має високу  чутливість до зміни напруги і струму якоря. Напруга і струм зрушення двигуна не більше З В і 0,16 А.

Контрольованим параметром для регулятора являється середня напруга на проміжку Е–Д. Якщо режим обробки відповідає заданому, то міст збалансований і двигун нерухомий. Коли середня напруга на проміжку Е–Д відхиляється від заданої в ту чи іншу сторону, на якорі двигуна з’являється напруга відповідної полярності, двигун починає обертатися і переміщує за допомогою ходового гвинта електрод-інструмент в необхідному напрямку. Задана середня напруга встановлюється потенціометром Rрег.

З метою підвищення чутливості регулятора використовують схеми живлення якоря  двигуна подачі електроду через проміжний підсилювач (електромашинний, транзисторний або тиристорний).

Для прикладу на рис. 7.9, б) приведена схема регулятора з електромашинним проміжним підсилювачем. В даному випадку в якості генератора імпульсів використано машинний генератор МГІ. Проміжний підсилювач представляє собою невеликий генератор постійного струму Г с двома обмотками збудження ОЗ1 і ОЗ2, який приводиться до обертання асинхронним двигуном Д1 з короткозамкненим ротором. Генератор Г живить якір двигуна Д подачі електроду-інструменту.

Обмотка ОЗ1 включена через потенціометр R1 на падіння напруги в струмообмежувальному резисторі R, яке пропорційне струму через проміжок Е–Д. Обмотка ОЗ2 включена через потенціометр R2 на напругу цього проміжку. При цьому МРС обмоток направлені зустрічно. В нормальному (заданому) режимі обробки результуюча МРС Fг генератора Г дорівнює нулю. Якщо проміжок Е–Д збільшиться, то відповідно зростає напруга на ньому, а струм зменшиться. В результаті появиться МДС Fг < 0, генератор збудиться, що приведе до зрушення двигуна Д і переміщенню електроду-інструменту в сторону зменшення проміжку Е–Д. При Fг > 0 рух електроду-інструменту буде відбуватися в протилежному напрямку.

3. Електрична схема електроерозійного верстата мод. 18М2.

Основними елементами електричної частини електроерозійного верстата являються генератор імпульсів, автоматичний регулятор подачі, допоміжні електроприводи підйому ванни, переміщення робочої головки та інших вузлів верстата, пристрої для регулювання режимів обробки, контролю і захисту.

На рис. 7.10. приведена електрична схема копіювально-прошивочного електроерозійного верстата загального призначення моделі 18М2. Потужність, що споживається верстатом, не більше 7 кВА. Об’єм робочої рідини (солярове масло) 250 л.

Двигун Д1 переміщення ванни з робочою рідиною асинхронний, с короткозамкненим ротором. До мережі 380 В двигун підключається реверсивними контакторами КП і КО. Про наявність напруги мережі сигналізує лампа ЛС1.         

Для підйому ванни двигун Д1 включається кнопкою КнП, для її опускання – кнопкою КнО. Кінцеві вимикачі ВКП и ВКО обмежують граничні положення ванни. На схемі позначені: КРС1 і КРС2 – контактні роз’ємні з’єднання (Ш — штир, Г — гніздо).

Рис. 7. 10. Схема копіювално-прошивочного електроерозійного верстата мод. 18М2.

 

Живлення RC-генераторів імпульсів ГІ здійснюється від джерела постійного струму (генератора або випрямляча) з вихідною напругою 220 В (на схемі не показаний).

Установка робочої частоти імпульсів виконується кнопками с защіпкою КнР1 – КнР5, які підключають конденсатори С1 – С5 до проміжку електрод – деталь (Е – Д). При цьому кожному конденсатору буде відповідати визначений струмообмежувальний резистор R1 – R5. Конденсатор С6 і резистор R6 включені постійно. Таким чином, можна задати шість режимів обробки по частоті. Для самого тонкого режиму використовують комбінацію С6, R6 при виключених кнопках КнР1 – КнР5.

Автоматичний регулятор подачі електродів з двигуном Д виконаний по схемі (рис. 7.9, а). Встановлення середньої напруги на проміжку Е – Д здійснюється за допомогою потенціометра R7. Для контролю служить вольтметр V при правому положенні перемикача П. В лівому положенні перемикача контролюється напруга живлення генератора ГІ.

Робота схеми відбувається наступним чином. Для підйому ванни натискається кнопка КнП, включаються контактор КП і двигун Д1. Ванна піднімається. По досягненні нею необхідного положення кнопку КнП відпускають, і ванна зупиняється. В робочому положенні ванни контакт кінцевого вимикача ВКР замкнеться, тому буде подана напруга на котушку контактора КГ. Якщо попередньо було включено джерело живлення постійного струму 220 В, то після натискання на кнопку КнГ включиться контактор КГ и приєднає Ґ І до джерела живлення. При цьому включиться реле напруги РН и загориться сигнальна лампа ЛС2, контакт РН заблокує кнопку КнГ. На обмотку збудження ОЗД двигуна Д буде подана напруга 220 В.

Тому як електрод Е відведений від деталі Д, на якір двигуна Д через повзунок потенціометра R7 подається частина напруги джерела живлення, і двигун переміщує електрод по направленню до поверхні деталі. Коли електрод приблизиться до деталі настільки, що виникне пробій проміжку Е – Д, почнеться робочий процес електроерозійної обробки при автоматичному підтриманні регулятором заданого режиму. Натискання на кнопку реверсу КнРП припиняє робочий процес, тому що один кінець обмотки якоря двигуна Д переключається з негативного електрода на позитивний полюс джерела, двигун реверсується і відводить електрод від деталі.

Електричні схеми багатьох електроерозійних верстатів інших моделей подібні розглянутій.

 

 

                                                                            

 

                                                                                  Рис. 7.11. Сучасний електро-            

                                                                                                    ерозійний прошивочний

                                                                                                    верстат з ЧПУ.

 

  Тема 7.4. Електроустаткування установок ультразвукової обробки.

1. Призначення і принцип дії установок ультразвукової обробки.

Даний вид обробки металів і твердих матеріалів заснований на використанні пружних коливань з понадзвуковою частотою – ультразвукових коливань.   

Для промислових ультразвукових верстатів і установок звичайно характерні частоти 16 – 30 кГц.

Можна назвати два різновиди, ультразвукової обробки: розмірну обробку на верстатах з використанням інструментів і очистку в ваннах з рідким середовищем.

Основним робочим механізмом ультразвукового верстату служить акустичний вузол, призначення якого – приведення робочого торця інструменту в коливальний рух. Спрощена схема будови акустичного вузла і ультразвукової ванни представлена на рис. 7.12.

 

 

 

                    а)                                                             б)

Рис. 7.12. Схеми акустичного вузла -а) і ультразвукової ванни -б).

  Акустичний вузол складається:

1 – сопло подачі робочої рідини; 2 – обмотка вібратора; 3 – магнітострикційний вібратор; 4, 6 – трубки подачі охолоджувальної води; 5 – ебонітовий кожух; 7 – концентратор; 

8 – інструмент; 9 – деталь.

Будова ультразвукової ванни:

1 – основа; 2 - магнітострикційний вібратор; 3 – діафрагма; 4 – бачок; 5 – ультразвукові хвилі; 6 – миюча рідина; 7 – деталь.

 

Акустичний вузол (головка) отримує енергію від генератора електричних коливань. Головним елементом акустичного вузла являється п’єзоелектричний або магнітострикційний перетворювач енергії електричних коливань в енергію механічних пружних коливань — вібратор (рис. 7.12,а).  

При обробці отвору інструмент 8 повинен мати форму заданого перерізу отвору. В простір між торцем інструменту і поверхнею деталі з сопла 1 подається рідина, в який звішені абразивні зерна. Від торця інструменту зерна абразиву придбають велику швидкість, вдаряються об поверхонь деталі і вибивають з неї найдрібнішу стружку. По мірі зняття шарів матеріалу відбувається автоматична подача інструменту. Абразивна рідина подається в зону обробки під тиском і вимиває відходи обробки.

За допомогою ультразвукової технології можна виконувати чистку поверхонь металевих деталей від корозії, плівок окислив, бруду та ін.

Робота ультразвукової ванни (рис. 7.12,б) основана на використанні ефекту локальних гідравлічних ударів, які виникають в рідині під дією ультразвуку.  

Деталь 7 занурюється в бачок 4, заповнений миючою рідиною 6, в середені якої від діафрагми 3 розповсюджуються хвилі ультразвукових коливань 5.

Діафрагма поєднана з магнітострикційним вібратором 2. Апаратура ультразвукових установок порівняно дорога, тому економічно доцільно використовувати ультразвукову очистку невеликих по розміру деталей тільки в умовах масового виробництва.

 

2. Джерела живлення установок ультразвукової обробки.

Джерелами живлення установок ультразвукової обробки, звичайно являються лампові генератори. Схема лампового генератора приведена на рис. 7.13.

    Рис. 7.13. Принципова електрична схема лампового генератора.

 

Основні елементи генератора: трифазний підвищувальний анодний трансформатор 1, випрямний міст 2 на тиратронах (або на високовольтних кремнієвих вентилях) зі згладжуючим дроселем. Др, генераторний блок 3 с трьохелектродною лампою ЛГ, яка перетворює енергію постійного струму в енергію високочастотних електричних коливань, коливальний контур 4, який складається з конденсаторної батареї СК та трансформатора LK, у вторинне коло якого включений акустичний вузол АВ. Генератор зібрано по схемі з самозбудженням. Для отримання незатухаючих коливань на сітку лампи подається напруга індуктивного зворотного зв’язку від коливального контуру, яка знаходиться в протифазі з її анодною напругою.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 90; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.134.118.95 (0.057 с.)