Кривая распада запаздывающих нейтронов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кривая распада запаздывающих нейтронов



 

Источником нейтронов служила бериллиевая мишень циклотрона Чикагского университета, обстреливаемая пучком дейтронов в 20 µА с энергией в 8 MeV. Вблизи мишени помещался тонкостенный железный сосуд, содержавший 160 фунтов U3O8. Этот сосуд окружался слоем парафина толщиною в 2». По оси сосуда помещался пропорциональный счетчик с ВF3, окруженный тонким слоем парафина. Счетчик соединялся через усилитель со счетным устройством («деление 64»), снабженным интерполирующими лампами и регистратором импульсов Сенко (Central Scientific Co.); отметчик времени в одну десятую секунды, приводимый в движение синхронным мотором, и секундомер со шкалой, разделенной на сотые секунды, монтировались на панели счетного устройства около интерполирующих ламп и регистратора импульсов. Эта группа шкал и ламп фотографировалась ручной камерой «Септ» на ленте, скорость движения которой могла изменяться. Запись на кинопленке времен и показаний счетчика давала возможность построить кривые распада.

Эксперимент производился следующим образом: во время бомбардировки пускался в ход секундомер (отметчик времени работал непрерывно), счетчик и усилитель были включены, но выходящие из усилителя импульсы тока шунтировались. Шкала была установлена на нуль. После предупредительного сигнала один из работников выключал циклотрон, а другой переключал выходной ток усилителя на измерительный контур и начинал фотографировать.

Легко было снять первую фотографию за полсекунды до выключения циклотрона. Обычно производилось от шестидесяти до ста фотоснимков. Необходимость одновременного применения секундомера и отметчика времени была вызвана тем, что точность секундомера в 1/10 секунды была необходима для малых промежутков времени между фотоснимками в течение начальной части цикла, но секундомер останавливался раньше, чем заканчивались отсчеты. Для следующих промежутков времени достаточную точность обеспечивал отметчик времени.

Было произведено около сорока серий опытов при меняющихся условиях эксперимента. Для лучшего разрешения коротких периодов давались активации в одну или две секунды. Производилась продолжительная, интенсивная бомбардировка длительностью 15–20 минут, насколько возможно близко к мишени, чтобы выявить с максимальной интенсивностью длительные периоды активности. Несколько 5-минутных бомбардировок, во время которых циклотрон давал по возможности устойчивый пучок, производилось для изучения относительных интенсивностей насыщения различных активностей; во время этих активации пучок циклотрона ослаблялся до 1 или 2 µА, чтобы воспрепятствовать чрезмерному возрастанию начальной скорости отсчетов (число отсчетов 300 в секунду было принято-в качестве верхней границы, допустимой для счетчика). В наличии имелось два счетчика с ВF3 один из них имел поперечное сечение для тепловых нейтронов в 2, 66 см2 а другой 0, 43 см2. После сильной активации, можно было еще в течение 13 мин. наблюдать запаздывающие нейтроны. Были произведены определения фона (повидимому, обусловленного нейтронами самопроизвольного деления урана). Показания фона доходили примерно до 0, 4 отсчета в секунду для большого счетчика и вычитались из измеряемого эффекта.

Изучение всех кривых распада дало следующую общую картину:

 

Активности с периодом более 57 сек. не удалось наблюдать даже после самой интенсивной бомбардировки, которую мы смогли осуществить в течение 20 минут.

Эти результаты приводят к следующему уравнению кривой распада для запаздывающих нейтронов после активации до насыщения:

Активность = константа(1,2e-0,28t + 1,2e-0,099t + 1,0e-0,029t + 0,135e-0,012t)

где t выражено в секундах».

Вторая часть экспериментов относилась к измерению общего числа нейтронов, испускаемых в промежуток времени от 0,01 сек. до 2,0 минут после выключения циклотрона. Предполагая, что все наблюдавшиеся запаздывающие нейтроны входят в указанные выше четыре группы, необходимо считать, что 1,0±0,2 процента нейтронов, выбрасываемых при делении урана, запаздывают по крайней мере на 0,01 сек. и что примерно для 0,07 процента запаздывание достигает одной минуты. Если запроектировать эффективное значение k коэффициента размножения для типового котла при отсутствии регулирующих стержней всего лишь в 1,01, и если предел полного изменения k под влиянием одного регулирующего стержня определить в 0,002, то число запаздывающих нейтронов достаточно для обеспечения легкого управления.

 

 

Приложение 4. Первый котёл с саморазвивающейся цепной реакцией

 

В главе VI были кратко описаны устройство и работа первого котла с саморазвивающейся цепной реакцией. Хотя от изложения деталей приходится пока из соображений секретности воздержаться, приведенные ниже параграфы дают несколько более полное описание, основанное на докладе Ферми. Котел был построен Ферми и его сотрудниками осенью 1942 г.

 

ОПИСАНИЕ КОТЛА

 

Согласно первоначальному плану, котел должен был иметь приблизительно сферическую форму, причем наиболее чистые уран и графит нужно было размещать вблизи центра. Контрольные измерения показали, однако, что критические размеры были достигнуты раньше, чем была завершена запроектированная сфера, и, в соответствии с этим, конструкция была видоизменена. В окончательном виде котел представлял сплющенный сфероид, плоский в верхней части. Было необходимо расположить блоки урана или окиси урана на одинаковых друг от друга расстояниях в кубической решетке, внутри графита. Графит нарезался в виде кирпичей и складывался слоями, попеременно содержавшими и не содержавшими урановые блоки. Эти блоки располагались по углам квадратных плит графита. Критические размеры были достигнуты, когда котел был уложен до высоты лишь в три четверти той, которая казалась необходимой по самым осторожным расчетам. После этого был добавлен всего лишь один слой.

Применявшийся графит был преимущественно от фирм National Carbon Co. и Speer Graphite Co. Котел содержал 12 400 фунтов урана, который поставлялся фирмами Вестингауз, Metal Hydrides Co. и Эймс. Так как в решетке было значительно больше точек, чем имелось блоков металла, то свободные места были заполнены блоками прессованной окиси урана.

Для управления и выполнения экспериментов имелось десять каналов, пронизывающих весь котел. Три из них вблизи центра применялись для регулирующих и аварийных стержней. Для облегчения экспериментирования, в частности, для удаления образцов, один ряд графитовых кирпичей, несущих уран и проходящих вблизи центра, был уложен так, что его можно было целиком выдвигать из котла.

Графитовая сфера поддерживалась деревянным каркасом, установленным на настиле на утрамбованной площадке ниже Вест-Стэндса (Стэг Филд).

 

ОЖИДАЕМЫЕ ПАРАМЕТРЫ КОТЛА

 

Металлическая решетка в центре котла и две другие главные решетки, образующие основную конструкцию остальной части котла, были каждая в отдельности изучены в экспоненциальных экспериментах ##18, 27 и 29. Эти эксперименты дали для коэффициента размножения значение 1,07 для металлической решетки и 1,04 и 1,03 — для решеток из окиси. Причем различие двух последних величин было обусловлено различием сортов применявшегося графита. Необходимо помнить, что это — значения коэффициентов размножения для решеток неограниченных размеров. Предсказание действительного эффективного значения коэффициента размножения, kэфф для строящегося котла зависело от достоверности значения k, полученного из экспоненциальных экспериментов, от правильного усреднения для различных решеток и от правильности расчета kэфф из среднего значения k для системы бесконечных размеров. Хотя начальные проектные данные котла были умышленно превышены, его успешное действие, когда он был лишь частично закончен, показывало, что значения коэффициентов размножения, вычисленные из экспоненциальных экспериментов, оказались слишком малыми. Наблюдавшееся эффективное значение коэффициента размножения для фактически построенной части запроектированной установки было около 1,0006, когда все поглотители нейтронов были удалены.

 

ИЗМЕРЕНИЯ ПРИ СБОРКЕ КОТЛА

 

Для того, чтобы быть уверенными, что при сборке котла случайно не будут превзойдены критические размеры, непрерывно производились измерения нейтронной активности. Эти измерения служили также для изучения свойств размножения нейтронов и давали возможность предсказать, где будет достигнута критическая точка.

Для измерения интенсивности реакции можно применять любой детектор нейтронов или γ-лучей. Нейтронные детекторы лучше, так как они быстрее реагируют и не подвержены влиянию излучений продуктов деления после прекращения экспериментов. Нейтронные детекторы (счетчик с трехфтористым бором) и ионизационные камеры для измерения γ-лучей были расположены внутри и вокруг котла. Некоторые из ионизационных камер применялись для приведения в действие регистрирующих приборов и автоматических аварийных приспособлений.

В самом котле измерения производились с помощью детекторов двух типов. Счетчик с трехфтористым бором вставлялся в щель на расстоянии в 43" от основания; с этим счетчиком производились частые отсчеты. Кроме того, фольга из индия каждый вечер облучалась в положении, по возможности самом близком к эффективному центру котла, а индуцированная активность фольги измерялась на следующее утро и сравнивалась с отсчетами счетчика с BF3.

Результаты подобных измерений могут быть выражены двояким образом. Так как число вторичных нейтронов, образовавшихся в процессе деления, постоянно возрастает по мере того, как котел строится, то активность А, индуцированная в стандартной фольге индия в центре, будет постоянно возрастать с увеличением числа слоев котла. Как только эффективное значение коэффициента размножения превысит единицу, А будет возрастать теоретически до бесконечности. Это приближение к бесконечности трудно наблюдать, и поэтому применяется другой способ выражения результатов. Предположим, что промежутки решетки и чистота материалов графито-урановой конструкции таковы, что коэффициент размножения сферы бесконечных размеров был бы в точности равен единице. Тогда, для реальной сферы подобной же конструкции, но конечного радиуса, активация детектора, помещенного в центре, была бы пропорциональна квадрату радиуса. Оказалось возможным определить соответствующий эффективный радиус Rэфф для реального котла в каждой из стадий его сборки. Отсюда вытекало, что если бы коэффициент k∞ был точно равен единице в среднем для решетки в котле, то активность A детектора в центре возрастала бы с возрастанием Rэфф таким образом, что (Rэфф)2/A оставалось бы постоянным. Если бы k∞ для решетки было больше единицы, то при приближении

 

Рис. 7. Число законченных слоев

размеров котла к критическому значению, т. е. при приближении значения kэфф к единице, А должно было бы стремиться к бесконечности и, следовательно (Rэфф)2/A — стремиться к нулю. Экстраполируя кривую зависимости (Rэфф)2/A от размера котла, т. е. от числа слоев до точки ее пересечения с осью абсцисс, можно предсказать, в каком слое kэфф станет равным единице. Такая кривая, изображенная на рис. 7, показывает, в каком слое достигаются критические размеры. Менее удобный, но более прямой способ записи результатов изображен на рис. 8, который показывает рост активности нейтронов котла с увеличением числа слоев.

При сборке котла, значительно ранее достижения критического слоя, в соответствующие щели были вставлены кадмиевые полосы.

 

Рис. 8. Число законченных слоев

Они вынимались по одному разу в день, с надлежащими предосторожностями, чтобы не пропустить момента приближения к критическим условиям. Так производилась постройка котла, пока не был уложен критический слой.

 

УПРАВЛЕНИЕ

 

Управление реакцией достигалось вдвиганием в котел нескольких полосок из материала, поглощающего нейтроны, кадмия или бористой стали. Пока котел бездействовал, несколько таких полосок кадмия вставлялись в ряд щелей, что уменьшало эффективный коэффициент размножения до величины намного ниже единицы. Для доведения котла до условий ниже критических достаточно было лишь одной из кадмиевых полос. Кроме этих полос, которые могли применяться для ручного управления котлом, были предусмотрены еще два аварийных стержня и один стержень для автоматического управления. Стержень автоматического управления приводился в действие двумя электромоторами, реагирующими на воздействие ионизационной камеры и усилительной системы, так что при возрастании интенсивности реакции сверх желаемого уровня стержень вдвигался, и наоборот.

 

РАБОТА КОТЛА

 

Для пуска котла все кадмиевые полосы, кроме одной, удалялись. Оставшаяся полоса медленно выдвигалась наружу. По мере приближения к критическим условиям, интенсивность нейтронов внутри котла быстро возрастала. Следует, однако, заметить, что когда последняя полоса кадмия была внутри котла в положении, отвечающем эффективному значению коэффициента размножения, лишь немного меньшему единицы, требовалось много времени для того, чтобы интенсивность достигла насыщения. Аналогично, когда кадмиевая полоса была выдвинута наружу настолько, чтобы kэфф стало больше единицы, интенсивность возрастала довольно медленно. Так, если стержень был выдвинут на 1 см от критического положения, «время релаксации», т. е. время, необходимое для того, чтобы интенсивность удвоилась, составляло около четырех часов. Эти длинные «периоды релаксации» являются результатом наличия запаздывающих нейтронов (Приложение 3), что делает сравнительно легкой эксплоатацию котла при постоянном уровне интенсивности.

Котел впервые был пущен 2 декабря 1942 г., с максимальной мощностью в 1/2 W. 12 декабря интенсивность была доведена примерно до 200 W; повышать далее интенсивность считалось небезопасным для персонала внутри и снаружи здания. Во время работы при высокой интенсивности производились измерения излучения около котла, внутри здания и снаружи.

 

 

Приложение 5. Примерный перечень докладов

 

Ниже приведен перечень характерных докладов о работах, выполненных в Металлургической лаборатории Чикагского университета в 1942 г.

 

Таблица для вычисления процента потерь, обусловленных присутствием примесей в сплаве.

О радие-бериллиевом источнике нейтронов.

Предварительные оценки излучений от продуктов деления.

Фон естественных нейтронов в котле.

Поперечное сечение поглощения быстрых нейтронов радон-бериллиевого источника.

О механических напряжениях, вызванных температурными градиентами в стержнях и сферах.

Влияние геометрии на резонансное поглощение нейтронов ураном.

Защита от излучений.

Планирование опытов по жидкостному охлаждению.

Отчет о возможности очистки урана путем образования и разложения карбонила.

О радиоактивности гелиевого охлаждения.

Оценка устойчивости эфира при различных условиях облучения.

Отравление ураном.

Активности трансурановых элементов и продуктов деления.

Химическое действие радиоактивного излучения на воздух, окружающий котел.

Оценка химического действия радиоактивного излучения на охлаждающую воду в котле.

Очистка уранил-нитрата методом извлечения.

Диффузия продуктов деления из литого урана при 600 °C и 1000 °C.

 

 

Приложение 6. Сообщение Военного министерства об испытании атомной бомбы в Нью-Мексико 16 июля 1945 г

 

Успешный переход человечества к новому веку атомному веку совершился 16 июля 1945 г. на глазах у затаившей дыхание группы знаменитых ученых и военных представителей, собравшихся в пустынной местности Нью-Мексико, чтобы в первый раз увидеть воочию окончательные результаты их усилий, обошедшихся в 2 000 000 000 долларов. Здесь, на отдаленном участке авиабазы Аламогордо, в 120 милях к юго-востоку от Альбукерка, в 5 ч. 30 м. утра был вызван первый созданный человеком атомный взрыв выдающееся достижение физики ядра. Темные тучи, ливень и молния усиливали драматический эффект.

Установленное на стальной башне новое оружие, предназначенное для изменения характера войны или могущее даже стать средством прекращения всех войн, было приведено в действие движением руки, возвестившим вступление человека в мир новой физики. Успех превзошел самые дерзкие ожидания. Ученые заставили небольшое количество вещества, полученное в результате работы огромных, специально сконструированных промышленных установок, освободить энергию, запертую внутри атома с начала времен. Результат был баснословен. Теория, едва намечавшаяся в довоенных лабораториях, была претворена в практику.

Эта фаза Проекта атомной бомбы, возглавляемого генерал-майором Лесли Р. Гроувзом, осуществлялась под руководством д-ра И. Р. Оппенгеймера, физика-теоретика из Калифорнийского университета. Ему следует поставить в заслугу превращение атомной энергии в орудие войны.

Напряжение перед взрывом достигло огромных пределов. Всегда существовала возможность провала. Слишком большой успех, по мнению некоторых присутствующих, значил бы, что оружие не поддается контролю и не может быть использовано.

Окончательная сборка атомной бомбы началась в ночь на 12 июля на одной старой ферме. По мере того, как различные составные части бомбы прибывали из отдаленных пунктов, нервное напряжений ученых все возрастало. Самым хладнокровным из всех был ученый, который производил монтаж важнейшей части бомбы сердечника профессор Корнельского университета д-р Р. Ф. Бэчер.

Стоимость проекта, включающего возведение целых городов и невиданных доселе заводов, растянувшихся на многие мили, небывалая по объему экспериментальная работа все это. как в фокусе, сконцентрировано в опытной бомбе. Никакая другая страна в мире не была бы способна на подобную затрату мозговой энергии и технических усилий.

Понимание значения этих завершающих мгновений перед окончательным конкретным испытанием не было утеряно этими людьми науки. Они полностью сознавали свое положение пионеров нового века. Они знали также, что одно неверное движение унесет их и весь их труд в вечность. Перед началом сборки бригадный генерал Томас Ф. Фаррелл, представитель генерала Гроувза, подписал важную расписку. Это знаменовало формальный переход невозместимого материала из рук ученых в руки армии.

Во время окончательной экспериментальной сборки пришлось пережить несколько неприятных минут, когда произошла задержка с одной важной деталью бомбы. Весь аггрегат был обработан механически с величайшей точностью. Деталь была уже частично вставлена, когда вдруг плотно застряла и не вдвигалась дальше. Однако, д-р Бэчер не потерял присутствия духа и заверил группу в том. что для устранения задержки нужно только время. Через три минуты слова д-ра Бэчера оправдались, и сборка закончилась без дальнейших инцидентов.

Бригады специалистов, состоявшие из виднейших ученых различных отраслей науки, приняли на себя специальные части сборки. Члены каждой бригады отдали разработке бомбы месяцы и даже годы совместного целеустремленного труда.

В субботу 14 июля механизм, который должен был определить успех или провал всего проекта, был поднят на верхушку стальной башни. Два дня продолжалась подготовительная работа. Помимо аппарата для получения детонации, башня была оснащена полным комплектом приборов для определения биения пульса всех реакций бомбы.

Неблагоприятная погода, упорно державшаяся во время сборки, очень беспокоила собравшихся экспертов, работа которых шла под вспышки молнии и раскаты грома. Погода, необычная и угнетающая, исключала наблюдение испытания с воздуха. Она даже задержала на полтора часа взрыв, намеченный на 4 часа утра. Еще за много месяцев был установлен приблизительно день и час испытания. Это был один из величайших секретов наилучше сохраненной тайны всей войны,

Ближайший пункт наблюдения помещался в 10 000 ярдах к югу от башни, где в убежище из строевого леса и земли были расположены приборы управления. В 17 000 ярдах от башни в том пункте, где наблюдать было лучше всего, заняли свои посты руководящие лица проекта атомной бомбы. В их число входили: генерал Гроувз, д-р Ванневар Буш, глава Управления научно-исследовательских работ, и д-р Джемс Б. Конант, президент Гарвардского университета.

Собственно детонация была поручена д-ру К. Т. Бейнбрнджу из Массачузетского технологического института. Он и лейтенант Буш, командовавший отрядом военной полиции, должны были последними произвести осмотр башни с космической бомбой.

В три часа утра участники испытания отправились на контрольную станцию. Генерал Гроувз и д-р Оппенгеймер посоветовались с синоптиками. Было принято решение приступить к испытанию, несмотря на отсутствие уверенности в том, что погода будет благоприятной. Взрыв был назначен на 5 ч. 30 м. утра.

Генерал Гроувз вместе с д-ром Конантом и д-ром Бушем непосредственно перед моментом испытания присоединились к ученым, собравшимся в лагере базы. Всем присутствующим было приказано лечь на землю, лицом вниз, головой в сторону, противоположную башне.

Когда приблизился критический момент, напряжение в контрольном помещении достигло колоссальных размеров. Наблюдательные пункты на территории были связаны с контрольным помещением посредством радио, и за двадцать минут до начала испытания д-р С. К. Алисон из Чикагского университета стал у микрофона и начал периодически объявлять время.

Сигналы времени: «осталось 20 минут, осталось пятнадцать минут» и т. д. и т. д., увеличивали напряжение до наивысшего предела: все находившиеся в контрольном помещении, включая д-ра Оппенгеймера и генерала Фаррелла, затаили дыхание и молились со всей напряженностью момента, который навсегда сохранится в их памяти. При сигнале «осталось 45 секунд» было включено автоматическое устройство, и с этого времени все части сложнейшего механизма действовали без контроля человека, и только у запасного выключателя был поставлен научный работник, готовый сделать попытку остановить взрыв, если будет дан приказ. Приказ отдан не был.

В назначенный момент ослепительная вспышка осветила все пространство ярче, чем самый яркий дневной свет. Отчетливым рельефом выделился горный хребет, находившийся в трех милях от места наблюдения. Затем раздался страшный раскатистый грохот, и прошла мощная воздушная волна, свалившая с ног двух человек, находившихся около контрольного помещения. Непосредственно после этого огромное, многоцветное клубящееся облако взлетело на высоту более 40 000 футов. Облачность на его пути исчезла. Вскоре субстратосферные ветры рассеяли ставшую теперь серой массу.

Испытание закончилось, проект удался.

Стальная башня полностью испарилась. Там, где стояла башня, был огромный кратер с пологими краями. Ошеломленные, но вздохнувшие облегченно при виде успеха испытания, ученые сразу же приступили к оценке мощи нового оружия Америки. Для исследования кратера к месту взрыва направились специально оборудованные танки, на одном из которых был известный исследователь ядра д-р Энрико Ферми. Ответ на их изыскания дают теперешние разрушения в Японии, вызванные первым военным применением атомной бомбы.

Ясно, что если бы не пустынность местности, где проводилось испытание, и не договоренность с прессой в данном районе, испытание привлекло бы внимание широкой общественности. Но даже и при этих условиях многие жители этой местности и до сих пор обсуждают эффект взрыва. Интересным фактом, сообщенным прессой, было впечатление одной слепой девушки близ Альбукерка, на расстоянии многих миль от места действия, которая в тот момент, когда вспышка озарила небо и еще не было слышно взрыва, воскликнула: «Что это?»

Генерал Гроувз и генерал Фаррелл дали следующие интервью.

Генерал Гроувз рассказал:

 

«Вот мои впечатления о великих событиях ночи: Я проснулся в 01.00 и примерно до пяти непрерывно был с д-ром Оппенгеймером. Конечно, он чувствовал себя напряженно, хотя его ум работал со свойственной ему необычайной ясностью. Я пытался скрыть от него явную озабоченность его помощников неопределенностью метеорологических условий. К 03.30 мы решили, что нам может быть удастся произвести взрыв в 5.30. К 04.00 дождь прекратился, но все небо было покрыто густыми тучами. С течением времени наше решение становилось все тверже.

В продолжении большей части этого времени мы вдвоем несколько раз выходили из контрольного помещения, чтобы посмотреть на звезды и уверить друг друга в том, что одна или две видимые звезды стали ярче. В 05.10 я покинул д-ра Оппенгеймера н возвратился на главный наблюдательный пункт, в 17 000 ярдах от места взрыва. Согласно нашим приказаниям, весь свободный персонал собрался на небольшой возвышенности.

За две минуты до установленного по расписанию момента взрыва все легли лицом вниз, ногами к месту взрыва. Когда громкоговоритель на контрольной станции провозгласил остающееся время, воцарилась благоговейная тишина. Д-р Конант сказал, что он никогда не воображал, что секунды могут быть такими долгими. В соответствии с приказом, большинство присутствующих защитили глаза тем или иным способом.

Сначала вспыхнул свет ни с чем не сравнимой яркости. Мы все перевернулись и сквозь темные очки увидели огненный шар. Приблизительно через сорок секунд пришла взрывная волна, за которой последовал звук, но ни то, ни другое не показалось нам поразительным так потрясла нас необычайная интенсивность света.

Образовалось большое плотное облако, которое, клубясь, вздымалось вверх с огромной силой и примерно в пять минут достигло субстратосферы.

Вскоре после главного взрыва в облаке произошли два дополнительные взрыва меньшей силы, не сопровождавшиеся световыми эффектами.

Облако поднялось на большую высоту сначала в виде шара, затем оно приняло форму гриба, зятем превратилось в длинный, похожий на трубу столб и, наконец, было развеяно в нескольких направлениях переменными ветрами на различных высотах.

Д-р Конант дотянулся до меня, и мы пожали друг другу руки, взаимно поздравляя один другого. Д-р Буш, который был с другой стороны от меня, сделал то же самое. Все присутствующие, даже не посвященные, испытывали чувство глубокого благоговения. Конант, Буш и я были охвачены тем же чувством, но в еще большей мере, от сознания, что оправдалась вера тех, кто нес ответственность за возникновение и осуществление этого исполинского проекта».

 

Вот впечатления генерала Фаррелла:

 

«Драматическая сцена внутри убежища не поддается описанию. Внутри и вокруг убежища собралось до двадцати человек, принимавших участие в окончательных приготовлениях. В их число входили: д-р Оппенгеймер, директор, вынесший на себе великое научное бремя руководства разработкой оружия, с десятком его главных помощников, д-р Кистяковский, д-р Бейнбридж, наблюдавший за всеми деталями подготовки к испытанию, метеоролог и некоторые другие. Здесь же находилась группа солдат, два или три армейские офицера и один морской офицер. Убежище было заполнено самыми разнообразными инструментами и радиоаппаратурой.

В течение двух полных лихорадочного возбуждения часов, предшествовавших взрыву, генерал Гроувз оставался с директором. За двадцать минут до назначенного часа генерал Гроувз отправился на свою станцию в лагере базы, во-первых, потому, что она являлась лучшим пунктом для наблюдения и, во-вторых, в связи с нашим правилом, согласно которому он и я не должны быть вместе в таких положениях, где имелся элемент опасности, который в данном случае существовал в обоих пунктах.

Тотчас после ухода генерала Гроувза по радио стали объявлять, сколько времени осталось до взрыва; это делалось для другой группы наблюдающих испытание и участвующих в нем. Напряжение быстро возрастало по мере приближения назначенного момента и перехода от минут к секундам. Каждый в этом помещении знал об ужасных скрытых возможностях, которые, как они думали, не были исключены. Ученые чувствовали, что их вычисления должны быть правильны и что бомба должна взорваться, но в душе у каждого была немалая доля сомнения.

Мы стремились к неизвестному и не знали, что может из этого выйти. Можно сказать наверняка, что большинство присутствующих молилось и молилось более горячо, чем когда бы то ни было раньше. Если взрыв удастся, это будет оправданием нескольких лет интенсивного труда десятков тысяч людей государственных деятелей, ученых, инженеров, промышленников, солдат и многих других.

В то краткое мгновение в далекой пустыне Нью-Мексико колоссальные усилия мозговой и мускульной энергии всех этих людей привели внезапно к ошеломляющему результату. По мере того, как часы отсчитывали последние секунды, напряжение д-ра Оппенгеймера, на которого было возложено весьма тяжелое бремя, все возрастало. Он почти не дышал. Он держался за столб, чтобы сохранить равновесие. Последние несколько секунд он пристально смотрел прямо перед собой и затем, когда человек, объявлявший время, закричал „Время“, и все осветилось колоссальной вспышкой света, за которой вскоре раздался низкий, раскатистый рев взрыва, напряжение на его лице сменилось выражением огромного облегчения. Некоторые из наблюдателей, стоявшие сзади убежища, были сбиты с ног воздушной волной.

Напряжение в комнате разрядилось, и все начали поздравлять друг друга. Каждый чувствовал: „Вот оно!“ Что бы теперь ни случилось, все знали, что беспримерная научная работа была сделана. Деление атомов не будет более скрыто в уединении мечтаний физиков-теоретиков. Оно оказалось почти взрослым уже при рождении. Это была великая новая сила для использования во благо или во зло. В убежище царило чувство, что все, имевшие отношение к рождению этой новой силы, посвятят свою жизнь тому, чтобы она всегда использовалась во благо и никогда во зло.

Д-р Кистяковский с радостным криком заключил д-ра Оппенгеймера в объятия и расцеловал его. Другие были также полны энтузиазма. В эти несколько минут все сдерживаемое волнение вырвалось наружу, и все тотчас же поняли, что взрыв далеко превзошел оптимистические ожидания и самые смелые надежды ученых. Все чувствовали, что они присутствуют при рождении нового века века атомной энергии и сознавали свою глубокую ответственность за то, чтобы помочь направить по должному пути огромные силы, ключ к которым был найден впервые в истории. Относительно настоящей войны у всех было такое чувство, что независимо от того, что еще может случиться, у нас есть средство обеспечить ее быстрое окончание и спасти жизнь тысячам американцев. Что же касается будущего, то было вызвано к жизни нечто большое и нечто новое, что пожалуй окажется неизмеримо важнее открытия электричества или любого другого из великих открытий, оказавших сильное влияние на наше существование.

Эффект действия этих сил вполне можно назвать беспрецедентным, великолепным, прекрасным, огромным и ужасающим.

Никогда раньше не существовало вызванного человеком явления такой колоссальной мощи. Световой эффект вспышки не поддается описанию. Вся местность была освещена палящим светом, сила которого во много раз превосходила силу полуденного солнца. Этот свет был золотым, пурпурным, фиолетовым, серым и синим. Он осветил каждую вершину, ущелье и гребень близлежащего горного хребта с такой ясностью и красотой, которых нельзя описать, а надо видеть, чтобы представить их себе. Это было то великое и прекрасное, о чем великие поэты только мечтали, но что они описывали бедными и неадекватными образами. Спустя тридцать секунд произошел взрыв, воздушная волна с силой ударила по людям и предметам, почти непосредственно за этим последовал сильный раскатистый, наводящий ужас рев, напоминавший о Судном дне и заставивший нас почувствовать, что мы, слабые существа, совершили святотатство тем, что осмелились узурпировать управление силами, которые до сего времени были во власти только Всемогущего. Слова недостаточное орудие для ознакомления тех, кто не присутствовал на испытании, с его физическим, духовным и психологическим эффектом. Чтобы постигнуть это, надо было видеть все своими собственными глазами».

 

 

Фотовкладки

 

Первая фотовкладка

 

 

Опытная установка на Клинтонском механическом заводе в Ок-Ридже (штат Теннеси)

 

Один из цехов Клинтонского механического завода в Ок-Ридже (штат Теннеси)

 

Вторая фотовкладка

 

 

Один из цехов Хэнфордского механического завода вблизи Паско (штат Вашингтон)

 

Одна из производственных установок Клинтонского механического завода в Ок-Ридже (штат Теннеси)

 

Третья фотовкладка

 

 

Здание Манхэттенского округа в Ок-Ридже (шт. Тенесси)

 

Хэнфорд, вблизи Паско (шт. Вашингтон), который был населён тысячами строивших установки Хэнфордского механического завода. Теперь он пуст.

 

Перспективный план Хэнфордского механического завода вблизи Паско (штат Вашингтон)

 

Четвёртая фотовкладка

 

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 36; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.137.183 (0.114 с.)