Критерии для оценки процесса разделения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Критерии для оценки процесса разделения



 

9.7. Раньше, чем приступить к детальному рассмотрению отдельных процессов разделения изотопов, мы выясним, какие общие требования предъявляются к этому процессу. Главные критерии для суждения о процессе разделения изотопов описываются нами ниже.

 

КОЭФФИЦИЕНТ РАЗДЕЛЕНИЯ

 

9.8. Коэффициент разделения, или как его иногда называют, коэффициент обогащения какого-либо разделительного процесса, это отношение относительной концентрации выделяемого изотопа после обогащения к его относительной концентрации в исходном продукте. Точнее, если до разделения числа атомов изотопов с массами m1 и m2 равны, соответственно, n1 и n2 (на 1 г смеси изотопов), а после разделения соответствующие числа равны n'1 и n'2, то коэффициент разделения равен

 

Это определение применимо как к одной ступени разделительной установки, так и ко всей установке, состоящей из многих ступеней. Обычно нас интересует либо коэффициент разделения одной ступени, либо общий коэффициент разделения всего процесса. Если r мало отличается от единицы, как это часто бывает для одной ступени, то иногда удобнее пользоваться величиной r-1 вместо r. Величину r-1 называют коэффициентом обогащения. В природном уране m1=235, m2=238 и n1/n2 = 1/140, в 90 %-ном U-235, n'1/n'2 = 9/1. Таким образом, при получении 90 %-ного U-235 из природного урана общее значение величины r должно быть равно около 1260.

 

ПРОИЗВОДИТЕЛЬНОСТЬ

 

9.9. Почти для всех способов разделения высокий коэффициент разделения достигается за счет низкого выхода. В дальнейшем, если не будет специальной оговорки, мы будем выражать производительность количеством чистого U-235. Таким образом если, например, разделительный аппарат обладает коэффициентом разделения 2 (т. е. n1' / n2' = 1/70) и производительностью в 1 грамм в день, то это означает, что из природного урана этот аппарат дает за один день продукт, состоящий из смеси 1 г U-235 и 70 г U-238.

 

ЗАГРУЗКА

 

9.10. Общее количество вещества, содержащееся в разделительной установке, называется «загрузкой». Загрузка может достигать весьма больших величин в установке, состоящей из большого числа ступеней.

 

ПУСКОВОЙ ПЕРИОД

 

9.11. В разделительной установке с большой загрузкой требуется довольно продолжительное время — недели или месяцы — от начала пуска до достижения стационарных условий работы. При расчете времени этот «пусковой период», или период установления равновесия, должен быть добавлен ко времени строительства завода.

 

ЭФФЕКТИВНОСТЬ

 

9.12. Из общего количества сырья, поступающего в разделительную установку, часть будет обогащена легкой компонентой, часть обеднена, часть останется неизмененной. Некоторое количество каждой из этих трех фракций будет потеряно и часть регенерирована. Очевидно, что важно иметь метод высоко производительного восстановления обогащенного вещества. В некоторых процессах количество неизмененного вещества ничтожно мало; но в некоторых, особенно в электромагнитном методе, описанном ниже, это — самая большая фракция, и, следовательно, эффективность, которой она восстанавливается для повторного цикла, является весьма существенной. Значимость регенерации обедненного продукта существенно зависит от степени обеднения отвала. Таким образом, вообще говоря, понятие эффективности не является вполне однозначным.

 

СТОИМОСТЬ

 

9.13. Так же, как и для всех частей проекта по урану, выигрыш во времени был значительно важнее, чем материальные издержки. Поэтому целый ряд больших разделительных установок для U-235 и дейтерия обошлись дороже, чем было бы необходимо, если бы строительство было отложено на несколько месяцев или лет, до тех пор пока не были бы разработаны более совершенные процессы.

 

НЕКОТОРЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ

 

 

ГАЗОВАЯ ДИФФУЗИЯ

 

9.14. Еще в 1896 г. лорд Рэлей показал, что смесь двух газов различных атомных весов может быть частично разделена, если заставить смесь диффундировать через пористую перегородку в вакуум. Молекулы легкого газа благодаря большей их средней скорости диффундируют через перегородку быстрее, вследствие чего прошедший через перегородку газ обогащен более легкой компонентой, а оставшийся газ (который не прошел через перегородку) обеднен легкой компонентой. Газ, максимально обогащенный легкой компонентой, получится в том случае, когда количество продиффундировавшего газа настолько мало, что не вызывает заметного обеднения оставшегося газа. Если процесс диффузии длится до тех пор, пока почти весь газ не прошел через перегородку, то среднее обогащение прошедшего газа естественно уменьшается. В следующей главе это явление рассмотрено более детально. Здесь мы только укажем, что принимая скорости диффузии обратно пропорциональными корням квадратным из молекулярных весов, мы получаем для коэффициента разделения в начальной стадии процесса диффузии, называемого «идеальным коэффициентом разделения» α, следующее выражение:

 

где M1 — молекулярный вес более легкого и M2 — молекулярный вес более тяжелого газа. Применяя эту формулу к случаю урана, можно убедиться в трудности задачи разделения его изотопов.

Так как сам уран не является газом, то для разделения нужно применить какое-нибудь его газообразное соединение. Единственно подходящим является шестифтористый уран, UF6 давление пара которого равно одной атмосфере при температуре 56 °C. Так как фтор имеет только один изотоп, то шестифтористыми соединениями являются U235F6 и U238F6 с молекулярными весами 349 и 352 соответственно.

Таким образом, если небольшому количеству шестифтористого урана дать диффундировать через пористую перегородку, то прошедший газ будет обогащен соединением U235F6 с коэффициентом

 

который очень далек от требуемого 1260 (см. параграф 9.8).

9.15. Этот расчет мог бы создать впечатление о безнадежности разделения изотопов (исключая, возможно, изотопы водорода) при помощи диффузионных процессов. В действительности, однако, такие методы могут с успехом применяться — даже для урана. Метод, который был применен Ф. В. Астоном впервые при частичном разделении изотопов (неона), был как раз метод газовой диффузии. Позднее Г. Герц и другие, работая с многоступенчатыми диффузионными агрегатами с рециркуляцией, смогли добиться практически полного разделения изотопов неона. Так как многоступенная система с рециркуляцией необходима почти при всех методах разделения, она будет подробно описана сразу же после вступительных замечаний о различных методах, к которым она имеет отношение.

 

ФРАКЦИОННАЯ ПЕРЕГОНКА

 

9.16. Разделение при помощи перегонки смесей веществ с разными точками кипения, т. е. разными упругостями пара — процесс хорошо известный в промышленности. Разделение спирта и воды (разность температур кипения около 20 °C) обычно проводится в простом перегонном кубе без использования каких-либо аппаратов, кроме выпарного аппарата и конденсатора. Конденсируемое вещество (конденсат) может быть собрано и снова перегнано, если это нужно, несколько раз. Для разделения соединений с очень близкими точками кипения было бы слишком трудно проводить необходимое число последовательных выпариваний и конденсаций. Вместо этого применяют метод непрерывного разделения в разделительной колонне. Основной задачей этой колонны является создание потока пара. направленного вверх, и потока жидкости, стекающей вниз, — оба потока находятся в тесном соприкосновении и постоянно обмениваются молекулами. Молекулы фракции с более низкой точкой кипения имеют относительно большую тенденцию попасть в поток паров, и наоборот. Такой метод перегонки с противотоком можно применять для разделения легкой и тяжелой воды, точки кипения которых различаются на 1, 4 °C.

 

ПРИМЕНЕНИЕ ПРОТИВОТОКА

 

9.17. Метод противотока полезен не только в двухфазных (жидкость-газ) процессах перегонки, но и в других случаях разделения, таких как диффузия под влиянием температурного градиента внутри однофазных систем, или разделение под действием центробежных сил. Противоток может быть образован двумя газами, двумя жидкостями или газом и жидкостью.

 

ЦЕНТРИФУГИРОВАНИЕ

 

9.18. Мы уже отмечали, что гравитационное разделение двух изотопов возможно, так как гравитационные силы, заставляющие молекулы двигаться вниз, пропорциональны молекулярным весам, а внутримолекулярные силы, препятствующие этому движению, зависят от конфигурации электронов, а не от молекулярных весов. Так как метод центрифугирования это в сущности метод применения псевдогравитационных сил большой величины, то он всегда рассматривался, как метод, пригодный для разделения изотопов. Первые опыты с центрифугами потерпели, однако, неудачу. Дальнейшее усовершенствование быстроходных центрифуг Дж. У. Бимсом и другими привело к успешным результатам. Г. К. Юри предложил высокие цилиндрические центрифуги с противотоком. Они нашли успешное применение.

9.19. В противоточной центрифуге во внешней части вращающегося цилиндра поток пара направлен вниз, а в центральной или аксиальной области — вверх. Через поверхность раздела между двумя потоками происходит постоянная диффузия обоих типов молекул из одного потока в другой; поле радиальных сил центрифуги действует сильнее на тяжелые молекулы, чем на более легкие, так что концентрация тяжелых молекул увеличивается на периферии и уменьшается в аксиальной области; для более легких молекул картина будет обратной.

9.20. Значительным преимуществом центрифуги при разделении тяжелых изотопов типа урана является то, что коэффициент разделения зависит от разности масс обоих изотопов, а не от квадратного корня из отношения масс, как в диффузионных методах.

 

МЕТОД ТЕРМОДИФФУЗИИ

 

9.21. Из кинетической теории газов следует, что скорости диффузии газов с разными молекулярными весами различны. Возможность практического осуществления разделения изотопов при помощи термодиффузии была впервые показана при теоретическом исследовании столкновений молекул и сил взаимодействия между ними. Исследования, проведенные Энскогом и Чэпменом до 1920 г., показали, что, если в смеси газов имеется температурный градиент, то один тип молекул будет стремиться концентрироваться в холодной области, а другой — в горячей. Это стремление зависит не только от молекулярных весов, но также от сил взаимодействия между молекулами. Если газ представляет собой смесь двух изотопов, то более тяжелый изотоп может собираться в горячей области, или в холодной, или совсем не накопляется, в зависимости от природы внутримолекулярных сил. Направление разделения может измениться на обратное при изменении температуры или относительной концентрации.

9.22. Явление термодиффузии впервые было использовано для разделения изотопов Г. Клузиусом и Г. Дикелем в Германии в 1938 г. Они построили вертикальную трубу, вдоль оси которой была натянута нагретая проволока, создававшая разность температур около 600 °C между осью и периферией. Эффект получился двойной. Во-первых, тяжелые изотопы в тех веществах, которые изучались Клузиусом и Дикелем, концентрировались вблизи холодной внешней стенки, и, во-вторых, холодный газ на периферии имел тенденцию опускаться вниз, а горячий газ на оси — подниматься вверх. Такая тепловая конвекция установила встречный поток, и термодиффузия вызвала преимущественный поток тяжелых молекул к периферии через поверхность раздела между двумя потоками.

9.23. Теория термодиффузии в газах достаточно сложна; теории явления термодиффузии в жидкостях совсем нет. Однако, эффект разделения наблюдается и с успехом использовался для разделения легкого и тяжелого шестифтористого урана.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 22; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.102.178 (0.016 с.)