Основні показники якості підсилювачів 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основні показники якості підсилювачів



ЗМІСТ

Вступ

1. Загальні відомості

2. Розробка структурної та принципової схем

3. Електричний розрахунок

3.1 Розрахунок напруги джерела електроживлення

3.2 Вибір транзисторів кінцевого каскаду

3.3 Розрахунок колекторного кола кінцевого каскаду

3.4 Розрахунок базового кола кінцевого каскаду

3.5 Вибір складених транзисторів УТ4, УТ5 кінцевого каскаду

3.6 Вибір транзистора і розрахунок кіл передкінцевого каскаду

3.7 Розрахунок коефіцієнта загальних гармонійних спотворень

3.8 Розрахунок кола загального зворотного негативного зв'язку за змінному струму

3.9 Розрахунок диференційного вхідного каскаду

3.10 Розрахунок елементів кіл зміщення і стабілізації режиму транзисторів кінцевого каскаду

3.11 Розрахунок результуючих характеристик підсилювача потужності

3.12 Розрахунок ємності конденсаторів підсилювача потужності

Висновки

Список використаної літератури

Список нормативної літератури

 


ВСТУП

 

Електричні сигнали використовують у всіх галузях науки та техніки. Так, у пристроях електрозв'язку вони передають інформацію на відстань. Різні процеси як у техніці так і у живій природі супроводжуються появою електричних потенціалів та струмів. У більшості випадків значення електричних сигналів, відображаючи інформацію о процесах та явищах у природі та техніці, дуже малі. Тому, щоб скористатися цими сигналами їх необхідно підсилити за допомогою підсилюючих пристроїв.

Підсилюючі пристрої почали застосовувати з 1910 р. коли В.І.Коваленко запропонував для підсилення електричних сигналів використовувати електронну лампу. Початок робот по теорії підсилювачів було покладено М. А. Бонч-Бруєвичем у 20-х роках. Групою спеціалістів під керівництвом А.І.Берга були розроблені теорія та методика розрахунку підсилюючих пристроїв.

З кінця 50-х років в електронній апаратурі почали застосовуватися транзистори. Завдяки позитивним якостям транзисторів у наш час електронна апаратура будується в основному на напівпровідникових приборах. На основі інтегральних мікросхем виготовляють складні та високо надійні електронні підсилювачі малих розмірів.

Підсилюючі пристрої у складі вимірювальних пристроїв застосовуються у всіх галузях народного господарства. За їх допомогою слабкі електричні сигнали підсилюються, в результаті чого значення цих сигналів стають достатніми для приводу у дію виконуючих пристроїв.

 


 

ЗАГАЛЬНІ ВІДОМОСТІ

 

Багатокаскадні підсилювачі

 

Принципи побудови багатокаскадних підсилювачів.

У двохкаскадних підсилювачах на БТ використовуються різні комбінації включення транзисторів. Якщо вихідний опір джерела сигналу і опір навантаження підсилювача приблизно рівні і складають одиниці або десятки килоом, слід застосовувати каскади з ОЕ; при малих опорах (менше 100 Ом) — перший каскад з ОЕ або Про і другий каскад з ОК, а при великих опорах (більше 100 кОм) — перший каскад з ОК і другий з ОЕ.

Якщо опір навантаження підсилювача значно перевищує опір джерела сигналу, слід використовувати обидва каскади з ОЕ. При опорі навантаження підсилювача меншому, ніж вихідний опір джерела сигналу, рекомендується використовувати обидва каскади з ОЕ або перший каскад з ОЕ, а другий — з ОК.

Для багатокаскадних підсилювачів приведені вище рекомендації відносяться до першого і останньому каскадам. Проміжні каскади виконуються з ОЕ.

Гібридні підсилювачі, що містять ПТ і БТ, мають істотні переваги в порівнянні з підсилювачами, в яких використовуються транзистори якого-небудь одного вигляду. Наприклад, в підсилювачах, в яких чергуються каскади на ПТ і БТ, досягається значно більший коефіцієнт посилення потужності, оскільки ПТ, включені з ОІ або ОС, дозволяють одержати дуже великий коефіцієнт посилення струму, а БТ — велике посилення напруги (при навантаженні високим вхідним опором ПТ). Вхідний опір таких, підсилювачів легко зробити високим, а вихідний — низьким. Гібридні підсилювачі можуть бути однонаправленими, тобто володіти наступною властивістю: при подачі напруги сигналу на вихід напруга на вході відсутня. Однонаправленість підсилювача дозволяє досягти великого посилення напруги при стійкій роботі.

Підсилювачі з вхідними каскадами на ПТ характеризуються дуже великим вхідним опором.

Двокаскадний підсилювач, в якому перший каскад з ОІ, другий - з ОБ (ОІ - ОБ), характеризується високими коефіцієнтом посилення напруги і вхідним опором, а також хорошій АЧХ. Такий підсилювач є практично однонаправленим, якщо опір навантаження каскаду з Про не дуже велике. Для отримання великого коефіцієнта посилення напруги опір навантаження повинен бути великим, проте при цьому погіршується АЧХ підсилювача у області вищих частот

Підсилювач, в якому перший каскад з ОС, другою з ОБ (ОС - ОБ), відрізняється меншою вхідною місткістю і великим вхідним опором в порівнянні з підсилювачем по схемі ОІ — ОБ, проте його коефіцієнт посилення напруги менше. Підсилювач по схемі ОІ — ОЕ має порівняно малий вихідний опір (більш ніж на порядок менше в порівнянні з підсилювачами ОІ — ОБ і ОС — ОБ) і значно більший коефіцієнт посилення струму; АЧХ у області вищих частот дещо гірший. Дуже близький по властивостях до цього підсилювача підсилювач, виконаний по схемі ОС — ОЕ. Підсилювач, в якому перший каскад з ОІ, другий з ОК (ОІ — ОК); має середній коефіцієнт посилення напруги, високий вхідний і дуже низький вихідний опір, тому використовується як перетворювач опорів. Недоліком цього підсилювача є порівняно велика вхідна місткість. Підсилювач, в якому перший каскад з ОС, другою з ОК (ОС — ОК), не підсилює напругу, може мати найменшу вхідну місткість і найбільший вхідний опір. Використовується як перетворювач опорів.

Підсилювачі з безпосереднім зв'язком між каскадами характеризуються простотою (містять мало деталей), високими показниками якості (порівняно з широким діапазоном робочих частот і малими нелінійними спотвореннями), стабільністю параметрів при заміні транзисторів, змінах напруги живлення і температури навколишнього середовища. Стабільність параметрів досягається введенням сильної НЗЗ по постійному струму, що подається з виходу підсилювача на перший каскад або охоплює два-три каскади.

З великого числа можливих варіантів подібних схем стабілізації режиму роботи транзисторів доцільно застосовувати тільки такі, які дозволяють досягти високої стабільності режиму і містять меншу кількість елементів. Одним з критеріїв високої ефективності стабілізації є малий опір резисторів, включених в ланцюзі баз транзисторів. При збільшенні опору в ланцюзі бази різко зростає дія зворотного струму колектора, що дестабілізує.

Підсилювачі з RC - зв'язком між каскадами також, як і підсилювачі з безпосереднім зв'язком, характеризуються простотою, малими габаритними розмірами і масою. Проте унаслідок впливу реактивних елементів зв'язку вони мають дещо гіршу АЧХ і менш економічні при однакових вимогах, що пред'являються до стабільності параметрів.

 

Підсилювачі потужності

 

Могутнім каскадом прийнято рахувати каскад, в якому транзистори віддають в навантаження потужність, близьку до максимально можливої. Основними вимогами, що пред'являються до могутніх вихідних каскадів, є отримання необхідної потужності в навантаженні і максимальний КПД при допустимих спотвореннях сигналу. Вимога максимального КПД має найбільше значення для підсилювачів з живленням від автономних джерел. Максимальне посилення потужності — другорядна вимога, оскільки необхідне посилення може бути одержане в інших каскадах.

Чим вищий КПД каскаду, тим менш могутній транзистор потрібен для отримання необхідної потужності. Максимальний КПД досягається при оптимальному навантаженні. Проте опір навантаження, як правило буває задано. Якщо воно значне відрізняється від оптимального, то для отримання високого КПД навантаження включають через трансформатор, що погоджує. Використовування трансформатора, що погоджує, на вході могутнього вихідного каскаду дозволяє одержати максимальний коефіцієнт посилення потужності передвихідним каскадом і мінімальний рівень спотворень при заданій потужності в навантаженні підсилювача. Застосування трансформаторів, що погоджують, в малогабаритних підсилювачах приводить до зниження КПД, оскільки малогабаритні недорогі трансформатори мають порівняно малий КПД.

Режими роботи транзисторів у вихідних каскадах. Транзистори можуть працювати в режимах класів А, В або АВ. Режимом класу А називають такий режим, при якому вихідний струм протікає протягом всього періоду підсилюваного сигналу. Режим з таким відсіченням, при якій вихідний струм протікає практично тільки протягом напівперіоду сигналу, називають режимом класу В. Промежуточний режим, при якому вихідний струм протікає протягом більше одного напівперіоду сигналу, називають режимом класу АВ. Вибір режиму здійснюється подачею відповідної напруги між базою і емітером. У режимах класів АВ і В можуть працювати тільки двотактні каскади.

Однотактні вихідні каскади застосовуються іноді в підсилювачах з малою вихідною потужністю, оскільки їх КПД не перевищує 40 %. Включення транзистора з Про і ОК. не застосовується, оскільки приводить до зниження посилення потужності.

 

ЕЛЕКТРИЧНИЙ РОЗРАХУНОК

 

Таблиця 3.1 Вхідні дані.

Номер варіанту

Тема курсового

проекту

Номінальна вихідна потужність Опір навантаження

Джерело сигналу

Діапазон відтворених частот

Допустимі відхилення частотної характеристики

Коефіціент загальних гармонічних спотворень Діапазон робочих температур
PH Вт RHОм Rд кOм Uд В FH Гц Fb кГц MH дБ Hb дБ Kг % Tmin Tmax ºC
8 Розрахунок схеми підсилювача, кінцевий каскад якого на зібраних комплементарних парах транзистора, з двополярним джерелом електроживлення 25 14 240 0,08 38 8 1,8 1,6 0,8 10-50

 

ВИСНОВКИ

 

При виконанні даного курсового проекту я розрахував підсилювач низької частоти з диференційним вхідним каскадом.

Спочатку я склав структурну схему підсилювача низької частоти. Потім на основі цієї структурної схеми була розроблена принципова електрична схема підсилювача низької частоти згідно початкових даних.

Наступним етапом був розрахунок основних параметрів та інших елементів даного підсилювача потужності. Всі розрахункові дані транзистора підсилювача занесено до таблиці. Після чого за допомогою довідника було підібрано транзистори з параметрами, які задовольняють розрахункові параметри приведені в таблиці.

Також за допомогою довідників було обрано нормовані значення опорів резисторів та ємностей конденсаторів.

В результаті виконання курсового проекту я закріпив та поглибила власні теоретичні знання і їх використання при виконанні практичних задач.

Також ознайомилась із сучасними схем підсилювачів низької частоти, які забезпечують високі показники підсилення та набула навиків роботи з довідниковою літературою.


ЗМІСТ

Вступ

1. Загальні відомості

2. Розробка структурної та принципової схем

3. Електричний розрахунок

3.1 Розрахунок напруги джерела електроживлення

3.2 Вибір транзисторів кінцевого каскаду

3.3 Розрахунок колекторного кола кінцевого каскаду

3.4 Розрахунок базового кола кінцевого каскаду

3.5 Вибір складених транзисторів УТ4, УТ5 кінцевого каскаду

3.6 Вибір транзистора і розрахунок кіл передкінцевого каскаду

3.7 Розрахунок коефіцієнта загальних гармонійних спотворень

3.8 Розрахунок кола загального зворотного негативного зв'язку за змінному струму

3.9 Розрахунок диференційного вхідного каскаду

3.10 Розрахунок елементів кіл зміщення і стабілізації режиму транзисторів кінцевого каскаду

3.11 Розрахунок результуючих характеристик підсилювача потужності

3.12 Розрахунок ємності конденсаторів підсилювача потужності

Висновки

Список використаної літератури

Список нормативної літератури

 


ВСТУП

 

Електричні сигнали використовують у всіх галузях науки та техніки. Так, у пристроях електрозв'язку вони передають інформацію на відстань. Різні процеси як у техніці так і у живій природі супроводжуються появою електричних потенціалів та струмів. У більшості випадків значення електричних сигналів, відображаючи інформацію о процесах та явищах у природі та техніці, дуже малі. Тому, щоб скористатися цими сигналами їх необхідно підсилити за допомогою підсилюючих пристроїв.

Підсилюючі пристрої почали застосовувати з 1910 р. коли В.І.Коваленко запропонував для підсилення електричних сигналів використовувати електронну лампу. Початок робот по теорії підсилювачів було покладено М. А. Бонч-Бруєвичем у 20-х роках. Групою спеціалістів під керівництвом А.І.Берга були розроблені теорія та методика розрахунку підсилюючих пристроїв.

З кінця 50-х років в електронній апаратурі почали застосовуватися транзистори. Завдяки позитивним якостям транзисторів у наш час електронна апаратура будується в основному на напівпровідникових приборах. На основі інтегральних мікросхем виготовляють складні та високо надійні електронні підсилювачі малих розмірів.

Підсилюючі пристрої у складі вимірювальних пристроїв застосовуються у всіх галузях народного господарства. За їх допомогою слабкі електричні сигнали підсилюються, в результаті чого значення цих сигналів стають достатніми для приводу у дію виконуючих пристроїв.

 


 

ЗАГАЛЬНІ ВІДОМОСТІ

 

Основні показники якості підсилювачів

 

Коефіцієнт посилення напруги КU— відношення напруги сигналу на виході підсилювача до напруги сигналу, підведеного до його входу.

Коефіцієнт посилення потужності КP — відношення потужності сигналу на виході підсилювача до потужності сигналу, підведеної до його входу. Часто коефіцієнт посилення виражають в децибелах КдБ= 20 lg, КU = 10 lg KP.

Амплітудно-частотна характеристика — залежність коефіцієнта посилення напруги від частоти. Елементами АХЧ є номінальний діапазон відтворних частот і її нерівномірність в цьому діапазоні.

Нерівномірність АЧХ — відношення найбільшого і якнайменшого коефіцієнтів посилення напруги в заданому діапазоні частот. Діапазон відтворних частот — діапазон частот, в межах якого нерівномірність АЧХ не перевищує заданою.

Вхідний опір — опір входу підсилювача для змінного струму. Звичайно нормують активну складову вхідного опору і вхідну місткість.

Вихідний опір — опір виходу підсилювача для змінного струму. Чим менше вихідний опір підсилювача, тим краще АЧХ по звуковому тиску.

Амплітудна характеристика підсилювача — залежність амплітуди вихідної напруги сигналу від амплітуди напруги сигналу на вході.

Нелінійні спотворення обумовлені нелінійністю ВАХ транзисторів і характеристик намагнічення магнітопроводів трансформаторів. Ці спотворення виявляються у вигляді нових компонентів спектру частот, відсутніх у вхідному сигналі. Спотворення, пов'язані з появою на виході ПП комбінаційних компонентів, називають інтермодуляціонними спотвореннями.

Рівень нелінійних спотворень оцінюють коефіцієнтами гармонік і інтермодуляціонних спотворень (інтермодуляції).

Коефіцієнт гармонік — відношення середньої квадратичної суми вищих гармонік до середньої квадратичної суми всіх гармонік сигналу (ГОСТ 9783-79).

Коефіцієнт інтермодуляціонних спотворень — відношення середньої квадратичної суми комбінаційних компонентів до компоненту вихідного сигналу, частота якого рівна частоті більш високочастотної вхідного сигналу. Коефіцієнти інтермодуляцїї і інтермодуляціонних спотворень визначають при заданому співвідношенні амплітуд вхідних гармонійних сигналів.

Коефіцієнти гармонік і інтермодуляціонних спотворень взаємозв'язані. При нелінійності малого порядку (другого або третього) вони мають близькі значення. При вищих порядках нелінійності коефіцієнт інтермодуляціонних спотворень перевищує коефіцієнт гармонік. Тому нормувати і визначати їх при оцінці якості ПП слід окремо. Суб'єктивне сприйняття нелінійних спотворень при звуковідтворенні залежить в основному від відносних амплітуд комбінаційних компонентів.

Динамічні спотворення — особливий вид спотворень, які виявляються в транзисторних ПП, охоплених глибокою НЗЗ, Ці спотворення обумовлені

перевантаженням каскадів підсилювача унаслідок запізнювання напруги НЗЗ по відношенню до напруги вхідного сигналу. Динамічні спотворення залежать, зокрема, від швидкості наростання вихідного сигналу, яку можна визначити по перехідній характеристиці підсилювача.

Перехідна характеристика підсилювача — залежність вихідної напруги від часу, що пройшов після подачі на вхід підсилювача стрибка вхідної напруги.

Динамічні спотворення можна розділити на гармонійні і інтермодуляційні. При гармонійних динамічних спотвореннях змінюється форма синусоїдального сигналу, якщо його амплітуда і частота перевищують критичні значення, визначувані максимальною швидкістю наростання вихідної напруги. Інтермодуляційні динамічні спотворення виникають за тих же умов, якщо посилюється складний сигнал.

Завади в підсилювачах обумовлені власними шумами, фоном (пульсації живлячих напруг) і наведеннями.

Рівень власних шумів підсилювача — відношення середньої квадратичної напруги шумів (у заданій смузі частот) на виході підсилювача до напруги, відповідної номінальній потужності. Рівень шумів прийнято виражати в децибелах.

Рівень фону — відношення середньої квадратичної напруги суми складових фону (гармонік частоти живлячої мережі) до вихідної напруги при номінальній потужності. Аналогічно оцінюють і рівень наведень.

Вихідна потужність підсилювача.

Максимальна вихідна потужність — вихідна електрична потужність, при якій обмеження по максимуму вихідного сигналу збільшує коефіцієнт гармонік по напрузі до 10%.

Номінальна вихідна потужність — вихідна потужність, що вказана в нормативно-технічній документації і є необхідною умовою при вимірюванні інших параметрів, наприклад, коефіцієнта гармонік, рівня перешкод і ін.

Чутливість підсилювача — напруга сигналу на вході, при якому вихідна потужність рівна номінальною.

Динамічний діапазон амплітуд — відношення (звично в децибелах) амплітуд найсильнішого і найслабкішого сигналів, які можуть бути посилені даним підсилювачем при допустимих спотвореннях і рівні перешкод. Рівень найслабкішого підсилюваного сигналу обмежується рівнем перешкод, найсильнішого — нелінійними спотвореннями. Для хорошої якості відтворного сигналу динамічний діапазон амплітуд повинен складати 60 дБ.

 



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 68; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.111.9 (0.05 с.)