Как в технологической документации обозначить опоры, зажимы и установочные устройства. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Как в технологической документации обозначить опоры, зажимы и установочные устройства.



Основы теории базирования.

Термины и определения основных понятий базирования и баз регламентируются ГОСТ 21495-76.

Базирование – придание заготовке или изделию требуемого положения относительно выбранной системы координат.

База – поверхность или выполняющее ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке или изделию и используемая для базирования.

Твердое тело может быть неподвижным, т.е. занимать постоянное неизменное положение в данной системе координат, или может передвигаться, изменять свое положение относительно определенной системы координат. Постоянное положение или движение тела достигается наложением геометрических или кинематических связей.

Условие, ограничивающее перемещение, называется геометрической связью.

Условие, ограничивающее скорость перемещения, называется кинематической связью.

Геометрические связи бывают односторонние и двусторонние.

В качестве примера двусторонней связи рассмотрим шар, находящийся между двумя параллельными плоскостями, расстояние между которыми равно диаметру шара. Плоскости ограничивают перемещение шара вдоль оси, проходящей перпендикулярно к этим плоскостям. Двустороннюю связь можно выразить уравнением:

ZC = r, или ZC – r = 0;

где ZC – координата центра шара;

r – радиус шара.

При односторонней геометрической связи движение шара в направлении координатной оси не ограничивается плоскостью, и его положение не определяется однозначно. Одностороннюю связь можно выразить неравенством:

ZC ≥ r, или ZC – r ≥ 0

Однозначная область положения шара по оси может определяться двумя параллельными плоскостями, удаленными друг от друга на расстояние 2r + а. Тогда геометрические связи наложенные на шар выражаются двумя неравенствами:

r ≤ ZC ≤ (r + a);

т.е. двумя односторонними геометрическими связями. Если в этом выражении соблюдается знак равенства, то односторонняя связь исключает движение шара по нормали к плоскости.

Положение механической системы с наложенными геометрическими и кинематическими связями в пространстве определяется обобщенными координатами системы.

Обобщенными координатами называются независимые параметры, определяющие положение или движение механической системы в пространстве.

Координата ZC по оси Z является обобщенной координатой шара. Числом обобщенных координат выражается число степеней свободы механической системы.

Свободное твердое тело (не имеющее геометрических и кинематических связей) обладает шестью степенями свободы. Оно может перемещаться вдоль координатных осей и вращаться вокруг этих осей.

С точки зрения теоретической механики базирование заключается в придании телу определенного положения путем конечного перемещения его из произвольного положения в положение заданное двусторонними геометрическими связями, выраженными размерами или координатами.

Пример 1.

Деталь втулка устанавливается на цилиндрический палец с буртом. Необходимо обработать ступенчатую поверхность на вертикально-фрезерном станке. Диаметр базового отверстия D=30+0,039 мм, диаметр установочного пальца d=30(-0,007-0,016) мм. Требуется определить ожидаемую точность размеров А1 и А2 (смотри эскиз ниже), если известно, что составляющие погрешности установки (погрешности закрепления и положения заготовки) равны нулю, т. е. EЗ= EП.З=0. Точность метода обработки принимается равной ω=0,120 мм (Косилова А.Г., Мещеряков Р.К, Калинин М.А. «Точность обработки заготовки и припуски в машиностроении»).

Решение:

Как видно из эскиза, заготовка устанавливается на отверстие. При такой схеме установки погрешность базирования размера А1 определяется по уравнению:

0,039+0,007+0,09=0,055 мм

Погрешность базирования при выполнении размера А2 равна нулю поскольку измерительная и технологическая базы совмещены.

Зная, что EЗ= EП.З=0, определим ожидаемую точность выполнения размеров А1 и А2 по уравнению:

0,055+0,120=0,175 мм

0+0,120=0,120

Далее, нам останется сравнить расчетное значение допуска с заданным. Должны выполняться условия:

Пример 2.

Материал заготовки чугун, шероховатость Rmax=200…300 мкм, твердость НВ 170…190. Заготовка устанавливается на рифленые опоры 7034-0379 ГОСТ 13442-68 (D= 20 мм, t=2 мм, b=0,5 мм). Сила действующая на одну опору по нормали Q=2000±300 Н. Допустимый износ опоры [u]=300 мкм. Необходимо определить погрешность закрепления EЗ при наибольшем износе опор приспособления.

Формулы для расчета погрешности закрепления возьмем из справочника под редакцией Б.Н. Вердашкина «Станочные приспособления» (стр. 530, таблица 11).

Определяем погрешность закрепления вследствие непостоянства силы закрепления (ΔQ=600 Н) по формуле:

Определяем погрешность закрепления вследствие неоднородности шероховатости базы заготовки (ΔRmax=100 мкм) по формуле:

Определяем погрешность закрепления вследствие износа опорной поверхности установочных элементов приспособления по формуле:

Суммарная погрешность закрепления будет равна:

Пример 3

Необходимо определить исполнительный размер центрирующей втулки при установке заготовки плоской поверхностью и наружной цилиндрической поверхностью при обработке паза и выполнении размеров А1=50±0,095 мм и А2=75-0,190 мм. Технологической базой является наружная цилиндрическая поверхность, обработанная в размер d=100h8(-0,054) мм. Погрешность положения заготовки EПР, вызываемая износом центрирующей втулки EИ и погрешностью установки приспособления на станке EC, принимаем равной EПЗ=0,040 мм (Корсаков В.С. «Основы конструирования приспособлений»). Точность чернового фрезерования ω=0,060 мм.

Как показывает анализ схемы установки, точность выполнения размера А1, заданного от оси заготовки до обрабатываемой поверхности, будет зависеть от точности диаметра отверстия центрирующей втулки D. Погрешность закрепления EЗ для размера А1 равна нулю – это видно из схемы установки. Исходя из этого принимаем, что точность выполнения размера А1:

где погрешность базирования размера А1 равна:

В данной зависимости составляющие Smin и TD неизвестны. Решая равенство относительно их, получим:

По ГОСТ 25347-82 выбираем поле допуска отверстия так, чтобы соблюдалось условие Smin+TD≥ES

Из таблицы ГОСТ 25347-82 для размеров отверстий в интервале (80…120) мм находим:

При сравнении расчетной величины (Smin+TD)=0,036 с табличным значением верхнего отклонения отверстия (ES), видим, что условию (Smin+TD)≥ES удовлетворяют поля допусков отверстий G5(+0,017+0,012) и G6(+0,034+0,012) мм, которые могут быть приняты в качестве исполнительных размеров центрирующей втулки:

D=100G5 или D=100G6

Если базовая наружная цилиндрическая поверхность заготовки (d) выполнена с отклонениями поля допуска размера не основного вала, то предельные размеры центрирующей втулки (кольца) определяются (после выбора поля допуска отверстия) зависимостями:

Dmax=D ном +(es+ES),

Dmin=D ном +(es+EI)

На рисунке ниже приведена схема расположения полей допусков.

 


Базирование.
Назначение технологических баз.

При разработке технологического процесса огромное значение имеет назначение технологических баз. От правильности выбора технологических баз зависят производительность обработки, точность выполнения размеров, конструкция приспособлений, конструкция режущих и измерительных инструментов.

Исходными данными для назначения технологических баз являются:

· сборочный чертеж изделия;

· чертеж детали;

· объем выпуска продукции;

· наличие и состояние технологического оборудования;

· оснащенность приспособлениями;

· оснащенность режущим инструментом;

· оснащенность измерительным инструментом;

· квалификация рабочих.

При разработке технологической документации, технолог должен соблюдать принципы совмещения и постоянства баз.

Принцип совмещения баз.

Суть принципа совмещения состоит в том, что в качестве технологических баз следует назначать поверхности, которые одновременно являются конструкторскими и измерительными базами.

Основное преимущество данного принципа в том, что точность не зависит от размеров, получаемых при выполнении предыдущих операций. Однако часто расположение конструктивных элементов не позволяет выдержать принцип совмещения полностью, либо возникает необходимость применения сложной технологической оснастки на отдельных операциях.

Нарушение принципа совмещения баз приводит к удорожанию процесса обработки и снижению производительности. Если технологическая база не совпадает с конструкторской или измерительной, возникает необходимость замены размеров, заданных конструкторской документацией, более удобными технологическими размерами, проставленными от технологических баз. Это приводит к образованию технологических размерных цепей, и соответственно требуется ужесточение некоторых конструкторских размеров, отсюда удорожание процесса. Поэтому и нужно придерживаться принципа совмещения везде, где позволяет расположение конструктивных элементов.

Принцип постоянства баз.

При разработке и реализации технологического процесса необходимо стремиться к использованию одного и того же комплекта технологических баз на всех операциях изготовления изделия (детали).

Смена технологических баз по ходу технологического процесса приводит к увеличению длины технологических размерных цепей, увеличивая тем самым погрешности обработки.

При обработке сложных, многочисленных поверхностей, полностью обеспечить принципы совмещения и постоянства баз, практически невозможно. В любом случае при выборе установочных и направляющих баз предпочтение отдают конструктивным элементам с наибольшими габаритными размерами и точностью наложенных размерных связей.

На точность и экономичность установки, кроме размерной характеристики, оказывает влияние доступность конструктивных элементов, которые выполняют функцию баз. Само собой разумеется, что поверхность, открытая для контакта и сопряжения по всем координатным направлениям, будет наиболее удобна в качестве базы.

Также точность и удобство базирования зависят от формы базовых элементов. Приоритет конструктивных элементов при выборе баз следующий:

1. призматические (с плоскими поверхностями);

2. конические (с центрирующими и направляющими поверхностями);

3. цилиндрические (с направляющими и опорными поверхностями);

4. фасонные (со сложной конфигурацией).

Когда конструктивные элементы не могут служить базами, обеспечивающими требуемую точность установки, можно применять элементы, искусственно созданные исключительно для базирования. Самый яркий пример искусственных баз – центровые отверстия валов, создаваемые для их базирования при изготовлении.

Технологические базы бывают черновые и чистовые. Черновые базы являются необработанными и используются на первой операции технологического процесса. Отсюда следуют особые требования к этим базам:

· черновые базы в связи со своей низкой точностью, должны использоваться только один раз на первой установке;

· для обеспечения правильного взаимного положения обработанных и необработанных поверхностей в готовом изделии, черновыми базаминеобходимо назначать поверхности, которые в готовом изделии остаются черновыми.

Методика выбора технологических баз представлена на рисунке ниже.

На этом прервемся, в следующей статье рассмотрим несколько практических задач по назначению технологических баз.


Базирование.
Примеры задач по назначению технологических баз.

В данной статье рассмотрим несколько практических примеров по назначению технологических баз.

Пример №1.

Необходимо произвести выбор технологических баз заготовки, которые позволят обеспечить размеры А=60(+0,2-0,1) и а=10(+0,1-0,05) смотри рисунок ниже. Тип производства - мелкосерийное.

Чтобы обеспечить точность размера (а) настройкой режущего инструмента на этот размер, нужно использовать принцип совмещения баз. Однако использование данного принципа приводит к усложнению конструкции приспособления и значительному ухудшению условий обработки. Для мелкосерийного производства это нежелательно.

Давайте рассмотрим базирование заготовки по другой схеме. В качестве технологической базы будем использовать плоскость 1, которая не совпадает с измерительной базой 2.

При данной схеме базирования, на настроенном станке размеры n и b будут постоянны. Следовательно размер глубины паза (а) не может быть выдержан точно, так как на его колебания будет влиять погрешность размера А, выдерживаемого на предыдущей операции. Нам нужно, на операции фрезерование паза, для обеспечения размера (а) рассчитать размер (b) и допуск на него. Технологический размер (b) рассчитывается, исходя из размерной цепи. В указанной цепи размер (а) является замыкающим, так как именно для него необходимо выдержать точность.

Из уравнения размерной цепи получаем, для номинальных размеров:

а=А-b; b=А-а=60-10=50 мм

Для допусков:

Ta=T А +Tb; Tb=Ta-T А =0,15-0,3=-0,15 мм

По результатам расчета мы получили отрицательный допуск. Такого быть не может, поскольку, допуск всегда является положительной величиной. В связи с этим можно сделать вывод о том, что размер (a) невозможно обеспечить в заданных условиях. Говоря другими словами, принятая схема базирования на этой операции не позволяет решить поставленную задачу.

Чтобы решить задачу для данной схемы базирования, необходимо ужесточить допуск размера А. Он устанавливается равным половине допуска на размер замыкающего звена (в нашем примере 015/2≈0,08). Устанавливаем допуск на размер:

А=60+0,04-0,04, т.е. Tа=0,08 мм

Тогда допуск размера b равен:

Tb=Ta-TА=0,15-0,08=0,07 мм

Теперь определим расположение поля допуска Tb относительно номинального размера b расчетом размерной цепи на максимум и минимум:

аmaxmax-bmin;

аminmin-bmax;

откуда:

bminmax-amax=60,04-10,1=49,94 мм;

bmaxmin-amin=59,96-9,95=50,01 мм;

Мы получили искомый технологический размер (b=50+0,1-0,06), его и будем указывать на эскизе обработки к данной операции.

Пример №2.

На токарном станке необходимо полностью обработать деталь шкив, обеспечивая параллельность торцов 1,2 и перпендикулярность их к оси А – А. Кроме того необходимо обеспечить концентричность поверхностей 3 и 4. Заготовка – отливка из серого чугуна. Нам нужно определить технологические базы и содержание токарной операции. Эскиз заготовки представлен на рисунке ниже.

Проанализируем два варианта обработки.

Вариант 1.

Выберем наружную цилиндрическую поверхность 4 и торец 1 в качестве черновых технологических баз. От выбранных баз на токарном станке в трехкулачковом самоцентрирующем патроне производятся следующие переходы: подрезка торца 2 и расточка отверстия в ступице, тем самым обеспечивается перпендикулярность торца 2 к оси А – А.

Во втором установе, комплектом чистовых технологических баз будет обработанный торец 2 и отверстие 3. На специальной оправке подрезается торец 1 и обтачивается поверхность 4. В результате этой операции обеспечивается параллельность торцов 1 и 2 и перпендикулярность их к оси А – А, кроме того обеспечивается концентричность поверхностей 3 и 4. Казалось бы поставленная задача решена, но это не так. Мы обеспечили точное расположение всех обработанных поверхностей, а положение необработанных поверхностей относительно обработанных осталось неучтенным. Визуально обработанный таким образом шкив можно определить по разностенности обода шкива и по эксцентрическому положению отверстия 3 в ступице.

Вариант 2.

Для этого варианта в качестве черновых технологических баз выбирается внутренняя поверхность 5 обода и внутренний торец 6. Такая схема базирования (смотри рисунок ниже), обеспечит минимальный эксцентриситет наружной поверхности относительно внутренней, а также достаточно точно толщину обода.

В данном случае обработка шкива осуществляется за один установ. В связи с этим все технические требования выполняются, и комплект необработанных поверхностей занимает определенное положение относительно обработанных.

Тему базирования можно продолжать бесконечно, и думаю, мы еще не один раз к ней вернемся.


Как в технологической документации обозначить опоры, зажимы и установочные устройства.

https://tehkd.ru/index.html

 

Начиная работать инженером технологом в машиностроительных отраслях, Вы, наверняка, обратите внимание, что на эскизах, в операционных картах технологических процессов, встречаются ошибки в обозначении опор, зажимов и установочных устройств. Часто данные обозначения на эскизах могут вообще отсутствовать. Действительно, существует множество операций, в которых опоры, и установочные устройства указывать не обязательно, но такая практика не рекомендуется.

На технологических эскизах эти обозначения служат указателями баз, а важность базирования переоценить трудно. Поэтому, прежде чем перейти к понятию баз и базирования в машиностроении, мы рассмотрим, как в технологической документации изображают опоры, зажимы и установочные устройства согласно ГОСТ 3.1107-81.

Обратите внимание, для изображения обозначения опор, зажимов и установочных устройств следует применять сплошную тонкую линию по ГОСТ 2.303-68.

Условные обозначения опор приведены в таблице 1.

Несколько обозначений одноименных опор на схемах на каждом виде допускается заменять одним с обозначением их числа справа. Кроме того допускается обозначение подвижной, плавающей и регулируемой опор на видах сверху и снизу изображать как обозначение неподвижной опоры на аналогичных видах.

В качестве примера можно привести вал, установленный в трехкулачковом патроне, с упором в торец и с креплением в подвижном люнете.

Условные обозначения зажимов приведены в таблице 2.

Количество точек приложения сил зажима к изделию, записывается справа от обозначения зажима.

Для двойных зажимов длина плеча устанавливается разработчиком в зависимости от расстояния между точками приложения сил. Допускается упрощенное графическое обозначение двойного зажима:

Обозначение двойного зажима на виде спереди или сзади при совпадении точек приложения сил допускается изображать как обозначение одиночного зажима на аналогичных видах.

В качестве примера обозначения зажимов можно привести деталь, установленную в кондукторе, с упором на три неподвижных опоры, и с применением устройства (электрического, пневматического) двойного зажима.

Условные обозначения установочных устройств приведены в таблице 3.

Если устройство установочно-зажимное то его обозначают сочетанием обозначений зажимов и установочных устройств.

Обозначение опор и установочных устройств, за исключением центров, допускается наносить на выносные линии соответствующих поверхностей.

Обратные центра выполняются в зеркальном изображении.

Цанговые оправки (патроны) следует обозначать

Для базовых установочных поверхностей допустимо применять обозначение

В качестве примера обозначения установочных устройств, можно привести деталь установленную в цанговом патроне с механическим устройством зажима, с упором в торец, с поджимом вращающемся центром и с креплением в подвижном люнете.

Обозначения форм рабочей поверхности опор, зажимов и установочных устройств приведены в таблице 4.

Рифленая, резьбовая, шлицевая и т.д. поверхности опор, зажимов и установочных устройств обозначаются в соответствии с чертежом.

Обозначение форм рабочих поверхностей следует наносить слева от обозначения опоры, зажима или установочного устройства.

Для указания устройств зажимов следует применять обозначения в соответствии с таблицей 5.

Обозначение видов устройств зажимов наносят слева от обозначения зажимов.

В качестве примера обозначения форм рабочей поверхности опор, зажимов и установочных устройств, можно привести деталь которая закрепляется при помощи пневматического зажима, с цилиндрической рифленой рабочей поверхностью.

Если схема имеет несколько проекций, допускается на отдельных проекциях не указывать обозначения опор, зажимов и установочных устройств относительно изделия, если их положение однозначно определяется на одной проекции.

И в заключение, инженеру-технологу следует иметь ввиду, что допускаются отклонения от размеров графических обозначений, указанных в таблицах 1-4.

В этой статье мы рассмотрели обозначение опор, зажимов и установочных устройств. В следующих статьях поговорим о понятии баз и базировании заготовок в машиностроении.


Основы теории базирования.

Термины и определения основных понятий базирования и баз регламентируются ГОСТ 21495-76.

Базирование – придание заготовке или изделию требуемого положения относительно выбранной системы координат.

База – поверхность или выполняющее ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке или изделию и используемая для базирования.

Твердое тело может быть неподвижным, т.е. занимать постоянное неизменное положение в данной системе координат, или может передвигаться, изменять свое положение относительно определенной системы координат. Постоянное положение или движение тела достигается наложением геометрических или кинематических связей.

Условие, ограничивающее перемещение, называется геометрической связью.

Условие, ограничивающее скорость перемещения, называется кинематической связью.

Геометрические связи бывают односторонние и двусторонние.

В качестве примера двусторонней связи рассмотрим шар, находящийся между двумя параллельными плоскостями, расстояние между которыми равно диаметру шара. Плоскости ограничивают перемещение шара вдоль оси, проходящей перпендикулярно к этим плоскостям. Двустороннюю связь можно выразить уравнением:

ZC = r, или ZC – r = 0;

где ZC – координата центра шара;

r – радиус шара.

При односторонней геометрической связи движение шара в направлении координатной оси не ограничивается плоскостью, и его положение не определяется однозначно. Одностороннюю связь можно выразить неравенством:

ZC ≥ r, или ZC – r ≥ 0

Однозначная область положения шара по оси может определяться двумя параллельными плоскостями, удаленными друг от друга на расстояние 2r + а. Тогда геометрические связи наложенные на шар выражаются двумя неравенствами:

r ≤ ZC ≤ (r + a);

т.е. двумя односторонними геометрическими связями. Если в этом выражении соблюдается знак равенства, то односторонняя связь исключает движение шара по нормали к плоскости.

Положение механической системы с наложенными геометрическими и кинематическими связями в пространстве определяется обобщенными координатами системы.

Обобщенными координатами называются независимые параметры, определяющие положение или движение механической системы в пространстве.

Координата ZC по оси Z является обобщенной координатой шара. Числом обобщенных координат выражается число степеней свободы механической системы.

Свободное твердое тело (не имеющее геометрических и кинематических связей) обладает шестью степенями свободы. Оно может перемещаться вдоль координатных осей и вращаться вокруг этих осей.

С точки зрения теоретической механики базирование заключается в придании телу определенного положения путем конечного перемещения его из произвольного положения в положение заданное двусторонними геометрическими связями, выраженными размерами или координатами.



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 261; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.55.42 (0.12 с.)