Развитие механики в первой половине XIX столетия 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Развитие механики в первой половине XIX столетия



Развитие механики в первой половине XIX столетия

Трудами Эйлера, Лагранжа и других математиков и механиков XVIII в. сформировалась та отрасль математического естествознания, которая получила название теоретической механики.

Гаспар Гюстав Кориолис (1792—1843) открыл ускорение, испытываемое движущимися телами во вращающейся системе, и соответствующую силу инерции. Это ускорение ныне известно под названием «кориолисово ускорение», а сила — под названием «сила Кориодиса» (1835).

 

Развитие волновой оптики в первой половине XIX столетия

Факты из истории оптики начала XIX столетия показывают, как трудно раскрыть закономерности развития науки, которое происходит не путем последовательной и плавной эволюции, а сплошь и рядом испытывает неожиданные скачки и повороты. Успехи ньютоновской механики XVIII в. оказали огромное влияние на все области физики, в том числе и на оптику. Несмотря на поддержку теории Гюйгенса Ломоносовым и защиту волновой теории света Эйлером, победа корпускулярной теории была бесспорной, а самый принцип Гюйгенса был забыт.

Что касается открытых еще в XVII в. явлений дифракции и интерференции, то ведущие ученые конца XVIII — начала XIX в. не сомневались в том, что они получат исчерпывающее объяснение в терминах корпускулярной теории. Не удивительно, что гениальные исследования Томаса Юнга (13 июня 1773-10 мая 1829г) по интерференции и дифракции света были встречены с недоверием и даже с насмешкой, поскольку в них эти явления объяснялись с точки зрения волновой теории. Вскоре эти исследования получили мощную поддержку в работах Френеля, и волновая теория, несмотря на оппозицию ведущих ученых и необычайные трудности, вызванные открытием поляризации, восторжествовала.

В дальнейшем Юнг занимался проблемами волновой оптики, сформулировав в 1800 г. принцип суперпозиции волн и объяснив интерференцию света. Самый термин «интерференция» был введен в науку Юнгом. Его основной труд «Лекции по натуральной философии» вышел в 1807 г. в двух томах.

Юнг был великолепным знатоком музыки, играл почти на всех музыкальных инструментах, прекрасно знал животных, был цирковым артистом — наездником и канатоходцем.

Юнгу было уже известно о существовании невидимых, инфракрасных лучей («тепловых»), открытых Вильямом Гершелем в 1800 г., и ультрафиолетовых («химических») лучей, открытых Иоганном Риттером и Волластоном в 1802 г

Успехи оптики первой половины XIX столетия не ограничились открытиями, описанными выше. Совершенствование экспериментальной техники позволило взяться за решение задачи, поставленной Галилеем: определить прямыми методами скорость света. Задача эта была решена в середине века почти одновременно двумя французскими физиками: Ипполитом Физо (1819-1896) и Леоном Фуко (1819-1868). Физо разработал технически идею Галилея. Прерывание светового потока, идущего от источника света, он осуществил автоматически — вращением зубчатого колеса.

Физо провел свой опыт в 1849 г., получив для скорости света значение 313000км/с.

Гальвани. Луиджи Гальвани родился в Болонье 9 сентября 1737 г. В 1791 г. в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие.

Вольта. Алессандро Вольта родился 18 февраля 1745 г. В 1800 г. он построил первый генератор электрического тока — вольтов столб. Это изобретение доставило ему всемирную славу. Он был избран членом Парижской и других академий, Наполеон сделал его графом и сенатором Итальянского королевства. Но в науке Вольта после своего великого открытия уже не сделал ничего значительного. В 1819 г. он оставил профессуру и жил в своем родном городе Комо, где и умер 5 марта 1827 г. (в один день с Лапласом и в один год с Френелем).

Электромагнетизм

современный историк науки полностью согласен со словами Велланского: «Электромагнетизм открыт в Копенгагене профессором Ханс Кристиан Эрстедом (родился 14 августа 1777 г. Умер 9 марта 1851 г.), который открытием свое возвестил 1820 года».

Андре Мари Ампер родился 22 января 1775 г.. Наибольший вклад в изучение электромагнетизма внес французский физик Ампер, назвавший новую область физики «электродинамикой», и это название прочно вошло в язык физики.

Фарадей. Михаил (английское произношение—Майкл) Фарадей (родился 22 сентября 1791 г. Умер он 25 августа 1867 г) в семье лондонского кузнеца. Недостаточность средств не позволила будущему великому ученому получить хорошее образование. В начальной школе он научился читать, писать, постиг начала арифметики, а затем поступил в учение к переплетчику. Здесь он восполнил недостатки образования чтением. Особенно его увлекло электричество и химия, и он сам начал проделывать опыты, описанные в книгах.

Всемирную славу фарадею принесли его электрические исследования. Фарадей вообще отказался от концепции действия на расстоянии и ввел в физику совершенно новый объект — физическое поле. Для Фарадея поле — это то, что излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. С Фарадеем в физику наряду с частицами вещества вошла и новая форма материи — поле, излучаемое и поглощаемое частицами и распространяющееся в пространстве с конечной скоростью. Математически эта идея была разработана гениальным преемником фарадея Джемсом Клерком Максвеллом.

 

Открытие закона сохранения и превращения энергии.

XIX в. принес наглядные доказательства связи теплоты с механическим движением. Конечно, факт выделения тепла при трении был известен с незапамятных времен. Сторонники теплоты усматривали в этом явлении нечто аналогичное электризации тел трением —трение способствует выжиманию теплорода из тела. Однако в 1798 г. Бенжамен Томпсон (1753-1814), ставший с 1790 г. графом Румфордом, сделал в мюнхенских военных мастерских важное наблюдение: при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура поднялась на 70 градусов Фаренгейта. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой. В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Этот опыт Румфорд считал доказательством того, что теплота является формой движения.

Майер. Юлиус Роберт Майер родился 25 ноября 1814 г. в Гейльбронне в семье аптекаря. Он получил медицинское образование и отправился в качестве корабельного врача на о. Ява (до этого он несколько месяцев работал в клиниках Парижа). В течение годичного плавания (1840—1841) врач Майер пришел к своему великому открытию. –закона сохранения энергии

 

Создание лабораторий

Вторая половина XIX в. отмечается важными изменениями в организации подготовки физиков. В это время сначала в Европе, а затем в Америке создаются физические лаборатории. В некоторых из лабораторий зарождаются научные школы.

В прошлом физик работал в одиночку. Приборы обычно покупались на собственные деньги или изготовлялись самими учеными. Нередко лабораториями служили частные комнаты

В Германии до 40-х годов XIX столетия делалось существенное различие между учреждением для учебных целей и учреждением для научных исследований. Так, в протоколе Тайного Совета от 22 июля 1807 г. правительство разъясняет университету, что«изобретение в научной области является делом ученых, а не делом учителей, которые как таковые, подобно судье, должны принимать во внимание не составление законов, а выполнение данных законов».

Такое же положение было и в университетах России, где считалось, что главная задача преподавателя — читать лекции, а занятия наукой — вещь второстепенная и необязательная.

В американских колледжах и университетах обучение сводилось к чтению лекций и штудированию учебников, а «лекционные демонстрации скорее создавали внешний блестящий эффект и не служили своим истинным целям».

В середине XIX столетия бурное развитие промышленности, машиностроения, химической промышленности, металлургии и горного дела, электротехники, теплотехники, строительство железных дорог, возникновение пароходства и воздухоплавания — все это стимулировало развитие науки, новых форм ее организации. Все более усиливалась связь науки и техники.

К этому времени значительно усложнилась физическая теория и эксперимент. Новые задачи, стоящие перед физической наукой, требовали для своего решения все большего числа физиков.

Итак, в новых условиях необходимо было предусмотреть новые формы и темпы подготовки ученых. Старые образовательные учреждения были не в состоянии выполнить эту роль, перестройка их была необходима.

И с сороковых годов XIX столетия начинают создаваться физические лаборатории как новая форма организации коллективных методов исследования в физике.

Первая физическая лаборатория была создана в Геттингенском университете В. Вебером, который был приглашен туда в 1831 г. Гауссом.

В Кембридже обучение экспериментальному искусству начало проводиться с 1874 г. в здании знаменитой Кавендишской лаборатории. Она была выстроена на частные средства и сыграла огромную роль в развитии физики. Достаточно сказать, что ее руководителями были в разное время Максвелл, Рэлей, Дж. Дж. Томсон, Резерфорд.

Первая лаборатория в России создается при Петербургском университете Ф. Ф. Петрушевским (1828-1904) в 1865 г.

 

Второе начало термодинамики

 

Прогресс теплотехники не только стимулировал открытие закона сохранения и превращения энергии, но и двинул вперед теоретическое изучение тепловых явлений. Уточнялись основные понятия, создавалась аксиоматика теории теплоты, разрабатывались математические методы. Ведущую роль в основании теории тепловых явлений сыграли Р. Клаузиус, В. Томсон и другие ученые.

Рудольф Клаузиус (2 января 1822 г. - 24 августа 1888г) в г. Кёслине. По окончании университетского курса в Берлине он был преподавателем в Артиллерийской школе. С 1855 г. он стал профессором в Высшей политехнической школе в Цюрихе, а затем в Цюрихском университете. С 1869 г. он переехал в Бонн, где и умер.

в 1850 г. второго начала, который Клаузиус формулирует следующим образом:

«Теплота не может переходить сама собой от более холодного тела к более теплому». без компенсации».

Вильям Томсон родился 26 июня 1824 г. в Белфасте в семье преподавателя математики.

Второе начало Томсон формулирует так:

«Если какая-либо машина устроена таким образом, что при работе ее в противоположном направлении все механические и физические процессы в любой части ее движения превращаются в противоположные, то она производит ровно столько механической работы, сколько могла бы произвести за счет заданного количества тепла любая термодинамическая машина с теми же самыми температурными источниками тепла и холодильника».

Геометрии пространства

Пространство – это форма существования материи, характеризующаяся такими свойствами, как протяженность, структурность, сосуществование и взаимодействие. Пространство – это, прежде всего, взаимное расположение вещей и процессов друг возле друга, их протяженность и определенный поря-док взаимосвязи; оно трехмерно и обратимо.

Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, развитой Н. Коперником в работе «Об обращениях небесных сфер». Теория Коперника направила движение естественнонаучной мысли к признанию безграничности и бесконечности пространства.

В рамках новой физической гравитационной картины мира развитой И. Ньютоном, утверждается представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения. Пространство считалось бесконечным, плоским, «прямолинейным», евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолютное, пустое, однородное и изотропное (нет выделенных точек и направлений) и выступало в качестве «вместилища» материальных тел, как независимая от них инерциальная система. Частицы движутся криволинейно только под действием сил.

Ньютоновские представления о пространстве и времени оставались в физике незыблемыми, а система аксиом и теорем казалась логически такой совершенной и интуитивно такой очевидной, что сомневаться в ее истинности не приходило в голову. Знаменитый немецкий философ Иммануил Кант считал аксиомы геометрии Евклида врожденными Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца XIX века.

В «Началах» Евклида пространственные характеристики объектов обрели строгую математическую форму. В это время зарождается геометрические представления об однородном и бесконечном пространстве. На протяжении двух тысячелетий не один математик высказывал сомнение в физической истинности аксиомы Евклида о параллельных, которая гласит: Но в системе Евклида был слабый пункт, так называемый пятый постулат, или аксиома о параллельных.

α
β
Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше 180°, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше 180°.

другой формулировке он гласит:

из одной точки на плоскости можно провести только одну прямую, которая не будет пересекаться с данной, сколько бы ее ни продолжали.

. С геометрией Евклида связывался тот взгляд, что пространство везде одно и то же. Она исходила из пяти аксиом или постулатов. Как уже известно, многих математиков не удовлетворял пятый постулат, который гласил, Этот постулат уму математиков представлялся не столь уже очевидным, чтобы его можно было считать «врожденной» истиной. Математики древности и нового времени приложили немало усилий, чтобы «доказать» пятый постулат, но тщательный анализ «доказательства» показал, что вместо евклидового постулата пришлось принять новое, эквивалентное старому, допущение что из одной точки на плоскости можно провести только одну прямую, которая не будет пересекаться с данной, сколько бы ее ни продолжали. Этот постулат не был очевиден.

Великий математик Карл Фридрих Гаусс (1777 – 1855) первым признал пятый постулат аксиомой и что, его можно заменить другими аксиомами, построив новую геометрию. Начиная с 1833 г. К. Гаусс разрабатывал свой вариант неевклидовой (астральной) геометрии. В письме к математику и астроному Фридриху Вильгельму Бесселю (1784 – 1846) признавался, что вряд ли когда-нибудь опубликует свои открытия в области неевклидовой геометрии из опасения насмешек, или, как выразился Гаусс, криков беотийцев (в переносном смысле – невежд).

В 1826 г. казанский математик, гениальный русский ученый Николай Иванович Лобачевский (1792—1856) пришел к смелому выводу, что взамен пятого постулата можно выдвинуть другой, противоположный ему, и тем не менее создать логически непротиворечивую геометрию, отличающуюся от евклидовой. Это была новая, неевклидова геометрия, столь же истинная, как и евклидова, хотя описывающая совершенно новое, неевклидово пространство.

Вопрос о том, какая же геометрия более соответствует действительности, как полагал Лобачевский, может быть решен только опытом. Это означало, что геометрические истины не являются врожденными, а приобретаются опытом, имеют только опытное происхождение. Это был очень важный шаг в развитии представлений о пространстве, в развитии самого научного мышления. Английский математик В.Клиффорд назвал Лобачевского «Коперником геометрии», а его научную деятельность оценил как подвиг.

Большую роль в развитии новых взглядов на пространство сыграл немецкий математик Бернгард Риман (1826—1866), который произнес в 1854 г., т. е. еще при жизни Лобачевского, Гаусса и Больяй, речь «О гипотезах, лежащих в основании геометрии». Риман здесь со всей четкостью подчеркивает, что «предположения геометрии не выводятся из общих свойств протяженных величин и что, напротив, те свойства, которые выделяют пространство из других, мыслимых трижды протяженных величин, могут быть почерпнуты не иначе, как из опыта». Для наглядной иллюстрации этих геометрий рассмотрим пространство двух измерений, называемое поверхностью. Евклидова геометрия реализуется на плоскости, Римана – на поверхности сферы, Лобачевского – на так называемой псевдосфере (отрицательной сфере).


Построим фигуру «треугольник» на этих трех поверхностях.

 

1     2     3

Рис. 4

В геометрии Евклида сумма углов треугольника равна 1800, у Римана – больше 1800, а у Лобачевского – меньше 1800 (рис. 1, 2, 3).

Кривизна пространства понимается в науке как отступление его метрики от евклидовой, что точно описывается в языке математики, но не проявляется каким-то наглядным образом.

Лобачевский и Риман считали, что только физические эксперименты могут показать нам, какова геометрия нашего мира. Эйнштейн в общей теории относительности сделала геометрию физической экспериментальной наукой, которая подтвердила характер пространства Римана. Общая теория относительности заменяет закон тяготения Ньютона новыми уравнениями тяготения и закон Ньютона становиться предельным случаем эйнштейновских уравнений.

Итак, к середине XIX столетия математическая мысль пришла от обычного трехмерного евклидового плоского пространства к многомерному искривленному пространству. Наступила очередь критики ньютоновской концепции пространства и времени физиками. Наиболее резкой критике основные понятия механики Ньютона подверглись со стороны австрийского физика и философа Эрнста Маха (1838— 1916).

Мах был профессором в Праге, когда в 1883 г. появилась его «Механика», носящая подзаголовок «Историко-критический очерк ее развития». Критикуя концепцию абсолютного времени Ньютона, Мах замечает, что ньютоновское абсолютное время «не может быть измерено никаким движением и поэтому не имеет никакого ни практического, ни научного значения». «...Время, — говорит Мах, — есть абстракция, к которой мы приходим через посредство изменения вещей:.. наши представления о времени получаются вследствие взаимной зависимости вещей».

Принцип Маха, согласно которому движение тела, в том числе и инерциальное движение, определяется взаимодействием на него всех масс Вселенной, предполагает мгновенное воздействие, т. е. силы дальнодействия. Таким образом, критика Махом ньютоновской механики сыграла роль в формировании взглядов Эйнштейна, как об этом писал сам Эйнштейн в письме к Маху. Позитивного перехода к новой механике Мах не нашел.

 

Время

В «Исповеди» Августина (354 – 430), христианского теолога и церковного деятеля, есть слова: «Если меня никто об этом не спрашивает, я знаю, что такое время. Если бы я захотел объяснить спрашивающему, нет, не знаю».

Время – это форма существования материи, выражающая длительность бытия и последовательность смены состояний всех материальных систем и процессов в мире. К основным свойствам времени относятся: длительность, одномерность и необратимость.

Время понималось абсолютным, однородным, равномерно текущим. Оно сразу и везде во всей Вселенной «единообразно и синхронно» и выступает как независимый от материальных объектов процесс длительности. Классическая механика сводила время к длительности, фиксируя определяющее свойство времени «показывать продолжительность события».

Существует много подходов к описанию явлений и событий во времени. Этим занимается, в частности, хронология - наука, имеющая дело с разделением времени на регулярные периоды, расположением событий в порядке из возникновения, установлением соответствия дат к известным событиям и выявлением несоответствий в датах, вызванных различием в системах применяемых в древности и сегодня.

Астрономическая хронология основана на астрономических явлениях и законах. Даты астрономических явлений могут быть определены весьма точно математическими вычислениями. Например, дата исторического явления устанавливается или проверяется с высокой степенью точности, если событие сопровождается астрономическим явлением (типа солнечного затмения). Так, например, шотландская история свидетельствует: когда король Норвегии Хекон IV (Старый) приплыл с норвежским флотом, чтобы наказать короля Шотландии, он высадился на Оркнейских островах. В это время на Солнце появилось тонкое яркое кольцо. Британский физик Д. Бревстер показал, что кольцевое затмение Солнца было видно в той местности 5 августа 1263 г.

В летописи в «Слове о полку Игореве» сказано:

У донца был Игорь, только видит – Словно тьмой полки его прикрыты, И воззрел на светлое он Солнце – Видит: Солнце – что двурогий месяц, А в рогах был словно уголь горящий; В темном небе звезды просияли, У людей в глазах позеленело.

Это было, как установили астрономы, 1 мая 1185 г., накануне сражения Игоря с половцами. Геологическая хронология построена на изучении окаменелостей, ископаемых, структуры земных недр. Точность определения датировки очень мала и не позволяет установить связь событий на разных континентах. А без таких сравнений история Земли остается в значительной степени загадкой. Только открытие радиоактивности изменило ситуацию. Появились методы радиометрического датирования. Сделавшие возможным вычисление абсолютного возраста минералов и определения геологических дат с беспрецедентной точностью.

Политическая хронология определяет даты и последовательность событий в истории нации, стран, человечества. Наиболее древние нации связывали историю со сроком службы некоторого деятеля, короля. Эта система дала довольно полную хронологию, но события между смертью короля и приходом его преемника иногда были пропущены, в ряде случаев правление непопулярных руководителей исключалось из письменных источников. Хронология древнего Египта начинается с воцарения первого фараона 1-й династии Менеса (3100 – 3066 гг. до н.э.). Египетский год начинался с восхода звезды Сириус и содержал 365 дней.

Египетские жрецы-астрологи, сопоставляя вид звездного неба с днями наступления разливов реки Нил, установили, что разливы наступают через несколько дней после первого утреннего появления на небе самой яркой звезды неба. Эту звезду прозвали Изидой-Сотис (Сириус) – слезой богини плодородия Изиды. Промежуток времени между двумя последовательными утренними появлениями этой звезды составлял 360 суток, поэтому продолжительность первого солнечного календаря составляла 360 дней (12 месяцев по 30 дней) и только значительно позже его продолжительность была увеличена до 365 суток.

Эра греческих Олимпиад была рассчитана с 1 июля 776 г. до н.э., греческие астрономы ввели два цикла: по 235 лунных месяцев (почти точно 19 лет) и 940 лунных месяцев (около 76 лет). В Римской хронологии эра основания города (ab urde condita или AUC) начинается с 22 апреля 753 г. до н.э.

Христианская хронология, используемая нами, основана Римским ученым-монахом Дионисием Малым (Ексигуусом), в 248 г. эры римского императора Диоклетиана (Первый год эры Диоклетиана соответствует 284 г. н.э.) предложил вести летоисчисление от новой эры, названной им эрой «от рождества Христова», считавшим, что Иисус Христос родился в 753 г. после основания Рима. Он объявил, что 248 г. соответствует 532 г. н.э., и рекомендовал следующий год нумеровать 533 годом. Так возникла новая или наша эра, от которой ведется счет лет до настоящего времени.

Число 532 взято из соображений более легкого пути предвычисления даты празднования пасхи, чем Дионисий и занимался. Древнегреческий математик и астроном Метон еще в 432 г. до н.э. установил, что 235 лунных месяцев содержат столько же суток (6940д), сколько их заключено в 19 тропических годах. Поэтому через каждые 19 лет одинаковые лунные фазы приходятся на одни и те же календарные числа месяца. Этот период известен в астрономии под названием круга Луны или метонова цикла. Так как полнолуние наступает в одни и те же календарные даты через 19 лет, а пасха празднуется только в воскресенье, которое бывает раз в 7 дней, а период високоса равен 4, то Дионисий просто нашел общее наименьшее кратное этих чисел 19х7х4 = 532. Следовательно, пасха приходится в воскресенье одной и той же даты через каждые 532 года.

В России новая эра исчисления была введена Указом Петра I с 1 января 1700 г. До этого на Руси счет годов велся «от сотворения мира», а новый календарный год с 1492 г. начинался с 1 сентября (сентябрьский стиль).

В истории западных цивилизаций с основными проблемами хронологии сталкиваются в согласовании дат, исчисленных в различных календарях, типа юлианского, григорианского и мусульманского.

Так что же такое время? Как его можно измерить? Каков возраст Вселенной?

Кратчайший промежуток времени, который мы можем ощутить, порядка 0,1 с. Время реакции человека на внешний сигнал составляет около 0,2 с.

Естественные единицы времени, с которыми мы имеем дело в повседневной жизни: день, год, времена года, лунные сутки – основаны на циклических изменениях, наблюдаемых в природе.

Прямой зафиксированный опыт человечества распространяется примерно на 5000 лет – именно этому времени соответствуют первые памятники письменности шумерской цивилизации.

Интервалы времени, отвечающие геологическим событиям, измеряют с применением «радиоактивных часов». Процесс радиоактивного распада нельзя ускорить или замедлить. Он протекает с постоянной скоростью, характерной для данного элемента. Так, например, при радиоактивном распаде одни из 1,6∙1011 атомов изотопа рубидия превращается за год в атом стронция, то есть до полного исчезновения такого изотопа рубидия необходимо, по крайней мере, 1011 лет. Но на земле он обнаружен. Для урана эта постоянная составляет 10–10, для калия – 10–9. И они есть в земной коре.

Следовательно, Земля не могла существовать вечно и «возраст» материала, из которого состоит Земля, не может превышать несколько миллиардов лет.

Самая древняя порода, обнаруженная на Земле (в Антарктиде), имеет возраст 3900 ± 300 млн. лет. Недавние исследования найденных в Эфиопии каменных орудий труда показали, что их возраст около 2,5 млн. лет. Возраст определен по соотношению изотопов аргона в исследованных образцах.

Точно таким же способом оценено время существования Солнечной системы – по измерению содержания радиоактивных элементов в метеоритах. Оказалось, что все метеориты имеют примерно одинаковый возраст – 4-5 млрд. лет.

Одна из последних оценок возраста Вселенной – 16±2 млрд. лет. Метод нуклеокосмохронологии показал, что возраст одной из самых старых звезд CS22892-052 составляет от 13 до 21 млрд. лет.

Но насколько можно верить этой оценке, если она сделана по спектру одной всего звезды по одиночной линии излучения тория?

Таким образом, в самой природе, существуют физические явления и процессы, определяющие направление течения времени. В отличии от пространства, в каждую точку которого можно снова и снова возвращаться (и в этом отношении оно является как бы обратимым), время – необратимо и одномерно. Оно течет из прошлого через настоящее к будущему.

Нельзя возвращаться назад в какую-либо точку времени, но нельзя и перескочить через какой-либо временной промежуток в будущее. Необратимые процессы лежат в основе многих процессов, с особой отчетливостью они появляются на биологическом уровне. В 30-х гг. XX в. английский астрофизик А.С. Эддингтон (1882 – 1944) ввел понятие «стрелы времени».

Приведем примеры процессов, характеризующих направление времени, воплощающих необратимость времени.

Излучение – волны всегда испускаются источником и являются расходящимися, затухающими по прошествии времени (т.е. уходящими в будущее). Но не обнаружены волны, сходящиеся к источнику из прошлого (хотя теоретических можно решить уравнения, рассматривающие эту возможность).

Термодинамика – второе начало устанавливает закон возрастания энтропии в системе, не обменивающейся с внешним миром ни энергией, ни веществом, выражает увеличение молекулярного хаоса до тех пор, пока система не достигнет термодинамического равновесия.

Эволюция – для незамкнутых систем свойственна динамическая самоорганизации материи. Она наблюдается в биологической эволюции, эволюция общества и эволюции Вселенной в целом. Эволюция, другими словами, это возрастание порядка в системе, следовательно она противоречит второму началу термодинамики – закону возрастания энтропии.

Радиоактивный распад – происходит необратимое преобразование одних атомов в другие, обратного процесса не наблюдается. Например, конечным продуктом распада урана является свинец.

 

 

Но вместе с тем электродинамика и электронная теория оставляли неизменным основное представление классической физики о пространстве и времени. Геометрия оставалась евклидовой, время, как у Ньютона, текло повсюду равномерно, само по себе.

И хотя у Лармора, Лоренца, Пуанкаре время преобразовывалось при переходе от одной системы к другой, это преобразование носило чисто формальный характер и ни в малейшей степени не затрагивало основных представлений о пространстве и времени, которые оставались незыблемыми со времен Ньютона.

Эйнштейн позже писал, что «Мах ясно понимал слабые стороны классической механики и был недалек от того, чтобы прийти к общей теории относительности». Но Мах не пришел ни к общей, ни к специальной теории относительности. Он не сумел связать механику с идеями поля, с фактом конечной скорости распространения взаимодействия.

Принцип Маха, согласно которому движение тела, в том числе и инерциальное движение, определяется взаимодействием на него всех масс Вселенной, предполагает мгновенное воздействие, т. е. силы дальнодействия. Таким образом, критика Махом ньютоновской механики сыграла роль в формировании взглядов Эйнштейна, как об этом писал сам Эйнштейн в письме к Маху. Позитивного перехода к новой механике Мах не нашел.

Эйнштейн. Альберт Эйнштейн родился 14 марта 1879 г. в Ульме (Германия) в семье мелкого коммерсанта Германа Эйнштейна. Отец в поисках более обеспеченного и устойчивого существования часто переезжал с семьей из города в город, из страны в страну. Альберт не получил законченного среднего образования и в 16 лет пытался поступить в Высшую техническую школу в Цюрихе (Швейцария) Провалившись на вступительных экзаменах, он поступил в кантональную среднюю школу в швейцарском кантоне Аарау. Окончив эту школу в 1896 г., он поступил в ту же Цюрихскую Высшую политехническую школу на педагогический факультет. Учился Эйнштейн неровно. Он не любил обязательных занятий и экзаменов и предпочитал заниматься тем, что его интересовало. Он получил диплом об окончании школы 2 августа 1900 г. Он пробовал заняться педагогической деятельностью. С мая 1901 г. он несколько месяцев преподавал математику в техникуме города Винтертура. В этом же году он опубликовал свою первую работу «Следствия из явлений капиллярности». Потом он проработал несколько месяцев в качестве репетитора и лишь в 1902 г. получил постоянную должность технического инспектора в Швейцарском патентном бюро в Берне. Эту должность он занимал с 23 июня 1902 г. по 15 октября 1909 г. Именно здесь, в Берне, будучи скромным служащим бюро патентов, Эйнштейн стал знаменитым ученым.

Первые работы Эйнштейна были посвящены молекулярной физике и термодинамике. В ходе этих исследований Эйнштейн создал теорию броуновского движения,(Мариа́н Смолухо́вский) о существовании которого в то время не знал. Статья по этому вопросу—«Новое определение размеров молекул» — появилась в 1905 г. В этом же году в 17-м томе «Annalen der Physik» появилась статья — «Об одной эвристической точке зрения, касающейся возникновения и превращения света», посвященная квантовым свойствам света; в том же томе была опубликована еще одна статья — «К электродинамике движущихся сред», —содержащая основы специальной теории относительности. Каждой из этих трех статей было достаточно, чтобы обессмертить имя их автора.

В январе 1906 г. Эйнштейн защищает докторскую диссертацию «Новое определение размеров молекул» — первая статья из цикла работ Эйнштейна по броуновскому движению, напечатанных им в 1905-1908 гг. В 1907 г. Эйнштейн создает квантовую теорию теплоемкости.

В 1908 г. Эйнштейн был утвержден приват-доцентом Бернского университета. В 1909 г. он был избран экстраординарным профессором Цюрихского университета и расстался с бюро патентов.

В апреле 1911 г. Эйнштейн переехал в Прагу профессором теоретической физики. Через год он снова вернулся в Цюрих, на этот раз профессором Высшей технической школы, в которой когда-то учился. Здесь он пробыл до апреля 1914 г., когда после избрания членом Прусской Академии наук в Берлине переехал в Берлин. Здесь он создал общую теорию относительности, произвел совместно с де Гаазом знаменитый опыт по доказательству существования молекулярных токов Ампера (эффект Эйнштейна—де Гааза). В 1922 г. Эйнштейну была присуждена Нобелевская премия.

Основополагающая работа Эйнштейна по теории относительности называется «К электродинамике движущихся сред». Название статьи показывает, что она была задумана в русле электродинамики движущихся сред, и вторая часть статьи содержит преобразование уравнений электродинамики Максвелла — Герца для вакуума. Однако основное содержание работы Эйнштейна далеко выходит за рамки электродинамики и содержит новый подход к проблеме пространства и времени. Этим подходом и широкой общей точкой зрения на все, а не только электромагнитные, физические явления статья Эйнштейна существенно отличается от работ Лармора, Лоренца, Пуанкаре и других исследователей по электродинамике движущихся сред.

Ближе всего к Эйнштейну подошел Пуанкаре. Однако Пуанкаре был непоследовательным в своих выводах. Сформулировав еще в 1902 г. принцип относительности как универсальный закон природы, Пуанкаре полагал вполне возможным отказ от него при наличии новых экспериментальных фактов, опровергающих «постулат относительности». Этим он по существу становился на точку зрения противников теории относительности, жаждавших ее экспериментального опровержения.

Лишь Эйнштейн понял, что принцип относительности — закон такой же абсолютной силы, как закон сохранения энергии. С таких позиций поиски опытов, оправдывающих теорию относительности, равносильны попыткам построить вечный двигатель. Опыт Майкельсона и его аналоги не могут удастся, так как противоречат теории относительности.

В XIX в. в физике появляется новое понятие – «поле», что, по словам Эйнштейна, явилось «самым важным достижением со времени Ньютона». Открытие существования поля в пространстве между зарядами и частицами было очень существенно для описания физических свойств пространства и времени. Структура электромагнитного поля описывается с помощью четырех уравнений Максвелла, устанавливающих связь величин, характеризующих электрические и магнитные поля с распределением в пространстве зарядов и токов. Как заметил сам Эйнштейн, теория относительности возникает из проблемы поля.

 

Введение «светоносного эфира» окажется при этом излишним, поскольку в предлагаемой теории не вводится «абсолютно покоящееся пространство», наделенное осо



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 82; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.78.30 (0.093 с.)