Биотехнология синтеза аминокислот и их очистка 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биотехнология синтеза аминокислот и их очистка



    В последние годы широкое применение в народном хозяйстве и медицине находят различные аминокислоты. Особое значение они имеют для сбалансирования белкового питания. Некоторые пищевые и кормовые продукты не содержат в своем составе необходимых количеств незаменимых аминокислот, в частности лизина. К таким продуктам относятся пшеница, кукуруза, овес, рис и ряд других. Для ликвидации возможного дисбаланса аминокислоты используют в чистом виде или вводят в состав комбинированных кормов, выпускаемых промышленностью. Поэтому основной сферой применения аминокислот следует считать создание рационов, позволяющих понизить содержание растительных белков в кормах. Показано, что искусственные смеси аминокислот позволяют экономить расход естественных кормов. Кроме добавок к кормам сельскохозяйственных животных аминокислоты используются в пищевой промышленности. Применяются они и при изготовлении ряда полимерных материалов, например синтетической кожи, некоторых специальных волокон, пленок для упаковки пищевых продуктов. Ряд аминокислот или их производных обладают пестицидным действием. Метионин и γ-аминомасляная кислота широко применяются как лекарственные средства. Удельный вес применения аминокислот в различных отраслях хозяйства может быть продемонстрирован на примере Японии, где на долю пищевой промышленности приходится 65% всех производимых в стране аминокислот, на животноводство -18, для медицинских целей - 15 и на прочие нужды - 2 %. Мировой уровень производства аминокислот достигает в настоящее время нескольких миллионов тонн в год. В наибольших количествах в мире вырабатываются L-глутаминовая кислота, L-лизин, DL-метионин, L-аспарагиновая кислота, глицин. Основными способами получения аминокислот являются следующие: экстракция из белковых гидролизатов растительного сырья, химический синтез, микробиологический синтез растущими клетками, при использовании иммобилизованных микробных клеток или ферментов, выделенных из микроорганизмов.

На примере Японии, занимающей лидирующее положение в мире по производству продуктов микробного синтеза, можно проследить основные методы получения аминокислот (табл.).

Микробиологический синтез - в настоящее время весьма перспективный и экономически выгодный способ получения многих аминокислот. В процессе культивирования Продуцентов аминокислот непосредственно синтезируются L-аминокислоты. Одна из важных задач микробиологического синтеза аминокислот - получение высокоактивных штаммов - продуцентов, в частности, с использованием методов генной инженерии. Именно таким способом в СССР получен высокоактивный штамм - продуцент L-треонина.

Кроме микробиологического синтеза аминокислоты можно получать, как указано выше, путем гидролиза природного белок-содержащего животного и растительного сырья. Это наиболее старый способ. Основным его недостатком является нерациональное использование сырья, которое с большой пользой может применяться в качестве белковых кормов или пищевых продуктов. Например, в странах юго-восточной Азии моноглутамат натрия получают из соевого шрота (обезжиренная соевая мука). В США описан способ получения аминокислот из клейковины пшеницы и кукурузного глютена, остающегося после отмывки крахмала. В равной мере, очевидно, могут быть названы и другие белки, однако их использование для получения аминокислот экономически невыгодно.

Химический синтез аминокислот достаточно эффективен, позволяет получить соединения любой структуры и организовать непрерывное производство при высокой автоматизации. В нем в основном используется непищевое сырье, достигается высокая концентрация продукта. Однако, как правило, процесс этот многостадийный и требует сложной аппаратуры. Главный недостаток химического синтеза - получение рацемической формы аминокислот. Пока не разработаны достаточно эффективные и дешевые пути разделения соединений на оптические изомеры. Химический синтез рентабелен для получения только тех аминокислот, которые могут быть использованы в виде рацемического продукта. Наиболее хорошо разработан химический синтез LD-метионина, главным потребителем которого является птицеводство. L- и D-изомеры метионина усваиваются организмами одинаково хорошо.

В последние годы имеются успехи в области асимметрического синтеза аминокислот, позволяющие избежать оптического разделения рацемических аминокислот. Новый подход к этой проблеме стал возможен благодаря открытию гомогенного каталитического гидрирования олефинов с помощью комплексов родия с фосфиновыми лигандами и разработке путей синтеза хиральных фосфинов. Применение комплексов родия с хиральными фосфинами в качестве гомогенных катализаторов для гидрирования N-ациламиноакриловых кислот позволило осуществить асимметрический синтез α-аминокислот с высокой степенью стереоспецифичности и хорошими выходами.

Использование для пищевых, кормовых и медицинских целей аминокислот, полученных химическим синтезом, ставит еще одну существенную технологическую проблему - полное освобождение готового продукта от возможных токсических полупродуктов синтеза.

В последние годы прочные позиции начинает занимать комбинированный химико-микробиологический метод синтеза, при котором исходное соединение получают в результате химических реакций, а конечная стадия осуществляется за счет активности ферментных систем соответствующих штаммов микроорганизмов.

Микробиологический метод синтеза аминокислот основан на способности многих микроорганизмов накапливать в среде значительные количества таких продуктов. Среди микроорганизмов, получивших оценку как потенциальные продуценты глутаминовой кислоты, обнаружено много бактерий, ряд дрожжей и других грибов. Большинство обследованных штаммов микроорганизмов независимо от их систематического положения преимущественно накапливают α-аланин и глутаминовую кислоту. Значительно меньше штаммов и в меньшем количестве выделяют аспарагиновую кислоту, лейцин, валин, изолейцин, лизин. Строгой корреляции между видовой принадлежностью микроорганизмов и способностью их накапливать аминокислоты нет.

Несмотря на широкое распространение микроорганизмов, накапливающих аминокислоты в процессе роста, продуцентов, обеспечивающих экономически выгодные выходы этих продуктов, не так много. Получают их обычно путем применения различных, мутагенных факторов. Продуцент должен аккумулировать преимущественно одну аминокислоту. Одновременное присутствие нескольких аминокислот, особенно если они близки по своим физико-химическим свойствам, затрудняет их выделение и очистку.

Ауксотрофные мутанты микроорганизмов, лишенные в результате действия мутагенов, ряда ферментных систем, признаны наиболее ценными продуцентами. Блокада у таких мутантов соответствующих реакций в цепи обмена веществ приводит к сверхсинтезу одного из метаболитов (см. схему биосинтеза лизина).

Наиболее распространенные продуценты аминокислот - грамположительные бесспоровые бактерии, относимые к родам Co r ynebacterium, Micrococcus, Arthrobacter, Brevibacterium (рис. 16.1) и некоторым другим, но точное таксономическое положение большинства из них определить трудно, так как содержащаяся в публикациях информация явно недостаточна для этого.

Одним из наиболее важных научных положений микробиологического синтеза аминокислот считается вопрос об их происхождении: находящиеся в среде аминокислоты - продукты ферментативного распада белков в результате автолитического процесса или они результат синтеза из других соединений. При использовании синтетических сред для культивирования продуцентов достаточно определенно показано, что аминокислоты, обнаруживаемые в среде, представляют собой продукты синтеза de novo.

Ферментативные реакции синтеза аминокислот протекают внутри клеток. Первоначально аминокислоты накапливаются внутри клеток в виде так называемых свободных аминокислот. На ранних этапах роста культуры свободные аминокислоты включаются в конструктивный обмен микроорганизма. Активное накопление аминокислот в среде в периодической культуре происходит обычно с середины экспоненциальной фазы ее роста, достигая максимума к концу.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 58; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.168.16 (0.006 с.)