Физические процессы в АМ при неподвижном роторе 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физические процессы в АМ при неподвижном роторе



Рассмотрим теперь процессы в асинхронной машине с неподвижным ротором и короткозамкнутой обмоткой ротора (рис. 4.6, а).
При включении обмотки статора на напряжение фазные токи создают основную гармонику МДС с амплитудой
.
Токи ротора , направленные, в соответствии с правилом Ленца, навстречу токам , создадут основную гармонику МДС с амплитудой
.

Число фаз обмотки ротора в общем случае не равно числу фаз обмотки статора . МДС и образуют результирующую МДС , которая создает основной магнитный поток , сцепленный с обеими обмотками.
Связь между этими МДС в комплексной форме определяется уравнением
.
Выражая МДС через соответствующие токи, получим
где - ток намагничивания, протекающий по обмотке статора.

Отсюда находим выражение для тока намагничивания :

или
, (4.3)
где - коэффициент приведения обмотки ротора к обмотке статора по току.
Полученное уравнение называется уравнением токов.
Ток намагничивания по определению создает в машине основной магнитный поток Ф, который, сцепляясь с обмотками статора и ротора, наводит в них ЭДС

Кроме основного потока в машине существуют также потоки рассеяния и (рис. 4.6, б). Каждый из этих потоков сцепляется только со своей обмоткой и наводит в ней ЭДС рассеяния и соответственно.
Действующие значения этих ЭДС можно выразить через соответствующие токи в комплексной форме:

С целью упрощения дальнейшего анализа выполним приведение обмотки ротора к обмотке статора, используя соотношения
и .
После приведения получаем
; ,
где - приведенное значение индуктивного сопротивления рассеяния обмотки ротора; - коэффициент приведения обмотки ротора к обмотке статора по сопротивлению.
В соответствии со вторым законом Кирхгофа напряжения, ЭДС и токи обмотки статора и ротора должны удовлетворять уравнениям
(4.4)

где - приведенное значение активного сопротивления обмотки ротора.
Уравнения напряжений (4.4) совместно с уравнением тока (4.3) образуют полную систему уравнений асинхронной машины для анализа установившихся режимов.
Уравнения показывают, что асинхронную машину можно заменить Т-образной схемой замещения (рис. 4.7), аналогичной схеме замещения трансформатора в режиме короткого замыкания.
Таким образом, при неподвижном роторе асинхронная машина работает как трансформатор, в котором электрическая энергия статора за вычетом потерь переходит в ротор, где, не совершая никакой полезной работы, превращается в тепло.

Электромагнитный момент АМ

Электромагнитный момент асинхронной машины создается в результате взаимодействия тока в обмотке ротора с вращающимся магнитным полем. Связь между моментом и скоростью вращения ротора можно получить из уравнения механической мощности. Если в него подставить выражение для тока ротора, то с учетом того, что угловая частота вращения равна ,получим

Все величины, входящие в это выражение константы, кроме скольжения s. Взяв производную и приравнивая ее нулю, найдем экстремумы функции . Они наступают при критическом скольжении . К приближенному равенству для критического скольжения можно перейти с учетом того, что . Подставляя критическое скольжение в выражение , получим значение максимального момента

. Знак плюс в этих выражениях соответствует двигательному режиму, а минус – генераторному.

Из выражения для следует, что максимальный момент в генераторном режиме больше, чем в двигательном. Однако, пренебрегая также, как это было сделано для , мы получим упрощенное выражение для максимального момента более удобное для качественного анализа –

.

Полагая в выражении , получим выражение для пускового момента асинхронного двигателя

Полученная зависимость представлена на рисунке. Точка соответствует идеальному холостому ходу машины. Этот режим может быть получен только за счет внешнего вращающего момента.Точка соответствует пусковому режиму или режиму короткого замыкания. Устойчивая работа машины возможна только в пределах скольжений от до , т.к. вне этого участка при увеличении скольжения момент двигателя уменьшается, что приводит к дальнейшему увеличению скольжения (снижению скорости) и этот процесс будет развиваться до полной остановки двигателя. Переход на участок неустойчивой работы называется "опрокидыванием" двигателя. Это происходит, если момент нагрузки больше или равен максимальному, поэтому максимальный момент называют также опрокидывающим.

Номинальный режим работы двигателя соответствует скольжению . Отношение называется перегрузочной способностью. Превышение максимального момента над номинальным является необходимым условием надежной работы двигателя.

Если за счет внешнего вращающего момента вал двигателя раскручивается до скорости выше синхронной , то скольжение становится отрицательным и машина переходит в генераторный режим.

При скольжениях скорость вращения будет отрицательной, т.е. ротор двигателя будет вращаться в направлении противоположном направлению вращения магнитного поля и машина перейдет в тормозной режим или режим противовключения.

На рисунке для наглядности критическое скольжение составляет около 0,5. Такие значения в реальных машинах нормального исполнения не бывают. Они находятся в пределах от 0,1 до 0,02, причем меньшие значения соответствуют машинам большей мощности. Поэтому рабочий участок характеристики практически линейный и может быть заменен прямой .

Выражение не позволяет анализировать свойства характеристики в общем виде. Однако, если его разделить на , то получится удобное выражение в относительных единицах, называемое по имени автора формулой Клосса

.

В теории электрических машин и электропривода вместо характеристики принято пользоваться механической характеристикой. Механическая характеристика двигателя это зависимость скорости вращения от момента нагрузки на валу, т.е. . Эту характеристику легко можно получить из характеристики , если учесть, что , т.е. она получается смещением оси момента в точку и изменением масштаба оси скольжений. При этом в новой системе координат режимы работы машины (генераторный, двигательный и тормозной) оказываются в различных квадрантах плоскости , а режимы холостого хода и короткого замыкания – в точках пересечения механической характеристики с осями координат.

Линеаризованная механическая характеристика рабочего участка примет вид




Поделиться:


Последнее изменение этой страницы: 2021-11-27; просмотров: 109; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.1.136 (0.006 с.)