Добавочные вещества (добавки) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Добавочные вещества (добавки)



 

При производстве ИСК кроме вяжущих веществ, заполнителей и наполнителей широкое применение находят добавочные вещества в смесях, именуемые добавками. На стадиях технологического про­цесса они облегчают выполнение операций, снижают количество за­трачиваемой энергии, уменьшают расход дорогостоящих компонен­тов, снижают материалоемкость, способствуют обеспечению необходимых показателей свойств материала, благоприятствуют ускорению или замедлению процессов структурообразования и от­вердевания. На стадии эксплуатации конструкций добавки, введен­ные ранее в ИСК, призваны упрочнить, стабилизировать структуры материала, максимально тормозить неизбежную деструкцию, возни­кающую и развивающуюся в материале под влиянием внешней сре­ды и внутренних самопроизвольных явлений.

Основное функциональное назначение добавок, и этим они от­личаются от заполнителей и наполнителей, заключается в том, что они всегда достаточно активно взаимодействуют с одним или не­сколькими компонентами смеси в процессе формирования структу­ры вяжущей части или макроструктуры ИСК. В результате реак­ции возникают новые соединения, которых ранее не было в смеси, причем добавки или полностью расходуются, или утрачивают свои индивидуальные признаки. Понятно, что при избыточном количе­стве добавки могут частично остаться в смеси и в сформованном материале без каких-либо изменений, что не является желатель­ным.

Распространенными являются порошкообразные добавки, по внешнему виду, а иногда и по химическому составу сходные с на­полнителями. В качестве тонкомолотых активных минеральных до­бавок их вводят в состав неорганических, вяжущих веществ с целью придания им требуемых свойств, например способности к тверде­нию в водной среде при добавлении к воздушной извести, повышен­ной водостойкости и стойкости против коррозии при добавлении к портландцементу или стойкости к воздействию высоких температур с сохранением прочности при добавках, вводимых в портландце­мента, глиноземистый и некоторые другие вяжущие при производ­стве жаростойких бетонов, и т. д. Кислотостойкость материала по­вышают добавки из порошкообразного кварца, андезита, базальта и др. К другим распространенным порошкообразным добавкам от­носятся: из природных — осадочные горные породы (трепел, диато­мит, опоки, магнезит и др.) или породы вулканического происхож­дения (пуццоланы, пемзы, туф, диабаз и др.); из искусственных — доменные гранулированные шлаки, зола-унос, нефелиновый шлам (побочный продукт алюминиевого производства), помол шамотно­го кирпича, обожженной глины (порошкообразный керамзит, агло-порит) и др. Все эти твердые добавки образуют с вяжущим новые, как правило, более сложные соединения типа силикатов кальция, алюминатов кальция и др.

Твердые добавки в смесях могут оставаться не только в состоя­нии нерастворимых минеральных порошков. Используют и такие твердые добавки, которые в смесях сравнительно легко образуют растворы или расплавы. Они относятся либо к катализаторам и ин­гибиторам (замедлителям), либо вступают в химические связи с компонентами смеси и создают новые фазы в процессе структурообразования. Их действие может привести также к преобразованию свойств поверхности компонентов, например к минерализации дре­весной дробленки и стружки путем экранирования поверхности пленкой нерастворимого вещества. Среди добавок этого дейст­вия — водорастворимые соли (средние и кислые), основания и дру­гие электролиты и неэлектролиты.

Широкое распространение имеют жидкие добавочные вещества (добавки) — гомогенные или гетерогенные, как, например, водные дисперсии полимеров, или легко переводимые в жидкое состояние в виде истинных и коллоидных растворов, эмульсий, мыльных пен и др., именуемых как поверхностно-активные вещества (ПАВ). В этих органических соединениях молекулы имеют углеводородный радикал и полярную группу, обращаемую при адсорбции к среде или твердой фазе, производя структурирующее воздействие в мате­риале.

Поверхностно-активные вещества как добавки разделяют в основном на гидрофобизирующие и гидрофилизирующие, что зави­сит от механизма их контактирования с вяжущими веществами и от конечного эффекта их взаимодействия — соответственно гидрофобизация (несмачиваемость водой) после воздействия первого и гид-рофшшзация — после воздействия второго. Эти добавки способст­вуют также повышению морозостойкости и долговечности, что является следствием их способности, особенно при гидрофобизирующих добавках, к воздухововлечению при приготовлении смеси. Образуются замкнутые воздушные пузырьки, которые предохраня ют разрушение материала при замерзании свободной воды, напри­мер, в бетоне с расширением льда. Вместе с тем практически не воз­никает водопроницания материала, так как количество воздушных пузырьков невелико (около 3—4%). Разновидностей ПАВ много, и они с большим эффектом используются в материалах для направ­ленного структурообразования и обеспечения требуемых качествен­ных показателей.

Добавки, вводимые в цементно-бетонную смесь, разделяют по эффекту их действия на бетонную смесь и бетон. Пластифицирую­щие, стабилизирующие, водоудерживающие добавки регулируют реологические свойства. Ускорители и замедлители схватывания те­ста, противоморозные добавки регулируют процессы твердения. Воздухововлекающие, газообразующие, пенообразующие, уплотня­ющие регулируют пористость бетона. Специальные добавки прида­ют, как отмечалось выше, бетонам кислотостойкость, жаростой­кость и др. Ряд добавок носит комплексный характер и выполняет одновременно несколько функций в бетонных смесях и бетоне.


ОСНОВНЫЕ РАЗНОВИДНОСТИ СТРОИТЕЛЬНЫХ КОНГЛОМЕРАТОВ

 

ОБЩИЕ СВЕДЕНИЯ О БЕТОНАХ

 

Бетоны на основе неорганических вяжущих веществ представля­ют собой искусственные строительные конгломераты, получаемые в результате твердения рациональной по составу, тщательно переме­шанной и уплотненной бетонной смеси из вяжущего вещества, воды и заполнителей. Кроме основных компонентов в состав бетонной смеси могут вводиться дополнительные вещества специального на­значения. Среди других ИСК бетоны относятся к самым массовым по применению в строительстве вследствие их высокой прочности, надежности и долговечности при работе в конструкциях зданий и сооружений.

Кроме высокой прочности, у бетонов на основе неорганиче­ских вяжущих веществ имеется много и других достоинств: легкая формуемость бетонной смеси с получением практически любых на­перед заданных форм и размеров изделий и конструкций, доступ­ность высокой механизации технологических операций и т. п. Бо­льшая экономичность изделий из бетона состоит в том, что для их производства применяют свыше 80% объема местного сырья — пе­ска, щебня, гравия, побочных продуктов промышленности в виде шлака, золы и др. По некоторым зарубежным данным, количество энергии, требующейся для производства бетонных материалов, является минимальным по сравнению с энергией (приведенной к единому эквиваленту), необходимой для изготовления стали, алю миния, стекла, кирпича, пластмасс. Для затворения порошкообраз­ных вяжущих в тестообразное состояние и получения бетонной смеси используют обычную воду — питьевую из водопровода или речную, озерную и др. Расход воды также ниже, чем при произ­водстве стали. После твердения тесто образует камень, например цементный камень (микроконгломерат), а уплотненная бетонная смесь—бетон (конгломерат). Часть объемов в бетоне, заполнителе и камне занимают поры и капилляры разного размера и в различ­ном количестве.

Для бетонов применяют почти все разновидности неорганиче­ских вяжущих, в соответствии с чем бетоны разделяются на цемент­ные, гипсовые, силикатные, шлаковые, специальные (на фосфатных, магнезиальных и других вяжущих). Для них используют также все разновидности заполнителей, вследствие чего бетоны разделяют на плотные, пористые, специальные. При объединении вяжущих и за­полнителей в принятых по составу количествах получают множест­во технических решений при производстве искусственных строите­льных конгломератов различного назначения. Если этих двух компонентов окажется недостаточно, вводят дополнительные веще­ства (добавки). Еще более сильным фактором, которым пользуются при получении бетонов с заданными свойствами, является техноло­гия с ее многообразными операциями (переделами), режимами (теп­ловыми, механическими и пр.) и характеристиками оборудования и энергетики.

К одному из показателей заданных свойств относится средняя плотность бетона. Величина средней плотности бетона зависит от разновидности заполнителя, а отчасти обусловлена пористостью цементного камня. Особо тяжелые бетоны со средней плотностью свыше 2500 кг/м3 получают при заполнителях в виде железной руды, барита, чугунного скрапа, обрезков стали или чугуна и т. п. Тяжелые — средней плотностью 2200—2500 кг/м3 — получают, применяя в них в качестве заполнителя щебень из плотных горных пород — гранита, диабаза, песчаника и др.; в состав облегченных бетонов со средней плотностью 1800—2200 кг/м3 вводят керамдор, шунгузит, шлаки. В легких бетонах со средней плотностью 500—2000 кг/м3 используют легкий заполнитель, природный или искусственный, в том числе пемзу, туфы, керамзит, аглопорит, ва-кулит и др.; нередко в них отсутствует песчаная фракция, вследст­вие чего возникают пустоты между щебнем, а сам бетон именуется крупнопористым легким бетоном. Особо легкие бетоны (теплоизо­ляционные) со средней плотностью менее 500 кг/м3 характеризуют­ся наличием в них воздушных или газовых ячеек. Они именуются ячеистыми бетонами.

При наибольшей крупности заполнителя до 10 мм — бетоны мелкозернистые, более 10 мм — крупнозернистые. При применении песка (крупность зерен до 5 мм) получают песчаные бетоны, также весьма необходимые в строительстве[34].

В зависимости от производственного назначения бетоны разде­ляют на конструкционные, предназначенные для изготовления бе­тонных и железобетонных внутренних и наружных конструкций промышленных и гражданских зданий и инженерных сооружений (колонны, балки, плиты и др.); гидротехнические — для строитель­ства плотин, шлюзов, облицовки каналов и других гидротехниче­ских сооружений; дорожные — для строительства дорожных и аэро­дромных оснований и покрытий; специальные — при устройстве жароупорных покрытий, изготовления кислотоупорных изделий и т. п. Каждой разновидности бетона присущи свои особенности: гидротехнический должен быть предельно плотным, водонепрони­цаемым, морозостойким, стойким против коррозии, тогда как бетон для жилищного строительства, тем более ограждающих конструк­ций (стен, перекрытий), должен быть малотеплопроводным, поддер­живать и сохранять хорошую звукоизоляцию и пр., а бетоны дорож­ные должны быть не только морозостойкими, но и устойчивыми к динамическим воздействиям транспортных нагрузок, к истираемо­сти и износу под колесами автомобиля в сложных климатических условиях.

В соответствии с ГОСТ 25192—82 основным показателем качест­ва бетонов является предел прочности при одноосном сжатии об­разцов-кубов с ребром 15 см с разделением их на классы В или предел прочности при сжатии цилиндрических образцов размером 15x30 см с разделением бетонов на классы С. Эти показатели качест­ва обоих классов принимаются по стандарту с гарантированной обеспеченностью. Марка бетона нормируется по среднему значе­нию показателя прочности на сжатие, тогда как класс бетона нор­мируется с гарантированной обеспеченностью прочности. Важное значение в классификации по прочности и другим показателям ка­чества отводится определению показателя однородности бетона.

Всего предусмотрено классов по прочности на сжатие при испы­тании кубов 15x15x15 см — 19 (от В1 до В60), при испытании ци­линдров 15x30 см — 19 (от С0,8 до С55); все значения прочности вы­ражаются в МПа. Марки бетонов выражаются в кгс/см2: от 15 (для ячеистых бетонов) до 600 и более (для тяжелых бетонов). Как отме­чалось выше, основное деление принято в настоящее время по клас­сам, но допускаются и марки бетонов.

Существенным недостатком бетона различных классов и различ­ной плотности является невысокая сопротивляемость растягиваю­щим (изгибающим) напряжениям. Она в 12—15 раз ниже прочности бетона при сжатии.


ТЯЖЕЛЫЕ (ОБЫЧНЫЕ) БЕТОНЫ

Исходные материалы. При выборе разновидности цемента учи­тывают характер конструкции и рекомендации нормативных доку­ментов (ГОСТа, СНиПа). Так, например, при производстве железо­бетонных конструкций промышленных зданий и многих инженер­ных сооружений, работающих в условиях воздушно-сухой среды, применяют портландцемента с повышенным содержанием алита. Если эти конструкции относятся к массивным, то более предпочти­тельны цементы с меньшим содержанием алита, которые меньше выделяют теплоты при реакциях твердения и, следовательно, в ме­ньшей мере конструкции подвержены тепловым неравномерным на­пряжениям. Если конструкция работает в условиях воздействия морской или другой минерализованной воды, тогда выбирают ма-лоалюминатные сульфатостойкие портландцементы и шлакопорт-ландцементы. Гидротехнические сооружения проектируют и строят с применением сульфатостойких портландцементов с пластифици­рующими и гидрофобными добавочными веществами. Аналогич­ным образом учитывают условия при выборе цемента для других видов бетона.

Кроме выбора разновидности вяжущего обосновывают также выбор его марки, исходя из требуемой прочности бетона в конст­рукциях и минимального расхода вяжущего как наиболее дорого­стоящего компонента бетона, избыток которого увеличивает вели­чину усадочных деформаций, а потому и снижает трещиностойкость бетона. Обычно исходят из соотношения, чтобы марка по прочности цемента превышала на 10—40% марку бетона, а при низ­ких марках бетона (110—300) превышение марки цемента составля­ет 100—200%. Но такие соотношения являются приблизительными, так как определение марок цемента и бетона по стандартам произ­водится при различных условиях подготовки соответствующих сме­сей и при несходных структурах испытываемых материалов. Имен­но поэтому часто фактически прочность бетона получается на од­ну-две марки выше марки принятого цемента. Чтобы избежать слу­чайности, следует при выборе цемента и расчетах исходить не из марки, а реальной активности (R*) при оптимальной структуре, в те­ории ИСК именуемой расчетной активностью. Она соответствует прочности цементного камня оптимальной структуры, полученной при испытании образцов, изготовленных при технологических па­раметрах и режимах, характерных для принятого или предполагае­мого производства бетона и изготовления бетонных изделий. При проектировании состава бетона общим методом (см. 3.4) можно до­статочно точно обусловить выбор расчетной активности цемента с учетом реальной технологии, реальных заполнителей и возможных добавок, в частности, пользуясь формулой (9.3). Строгие требования предъявляются к качеству воды, используемой при затворении бетонной смеси, а также для промывки заполнителей и увлажнения бетона при его твердении в сухих условиях. Рекомендуется приме­нять питьевую воду; не допускаются болотные и сточные воды. Ограничивается содержание растворенных в воде солей, органиче­ских веществ, вовсе не допускаются примеси нефтепродуктов, про­веряется водородный показатель рН, который не должен быть ниже 4,0 и выше 12,5.

Для тяжелых бетонов предусмотрены требования к качеству за­полнителей. Пески используют природные или получаемые дробле­нием плотных морозостойких горных пород с размером зерен не крупнее 5 мм. Важно обеспечить повышенную плотность зернового состава (по кривым плотных смесей) при модуле крупности не ниже 2,0. Ограничивается содержание пылевато-глинистых и других вред­ных примесей, о чем указывалось выше при описании заполнителей. На стадии проектирования состава бетона устанавливают целесооб­разный зерновой состав крупного заполнителя с наименьшим объе­мом пустот и наибольшей крупностью зерен при общих требова­ниях, указанных выше в отношении качества заполнителей[35].

Широко используют в технологии бетона пластифицирующие, воздухововлекающие и противоморозные добавки.

Определение состава бетона. Одной из основных технологиче­ских задач является проектирование состава бетонной смеси. Разра­ботан ряд методов проектирования состава, имеются официальные руководства, облегчающие решение этой задачи. Каждый раз необ­ходимо выбирать тот метод проектирования (или подбора), кото­рый при принятой технологии способен обеспечить получение наи­более достоверного состава и оптимальной структуры бетона. Тогда формируется качество бетона, при котором имеется не только комплекс заданных, но и экстремальных показателей свойств, что соответствует закону створа. При всех методах на начальной стадии производится обоснованный выбор исходных материалов, чему способствуют табличные данные и вспомогательные графики, поме­щаемые в соответствующие руководства по подбору составов. В них выбор исходных материалов обусловлен проектной маркой (клас­сом) бетона, разновидностью конструкций и эксплуатационными условиями с учетом не только прочности, но и морозостойкости, во­донепроницаемости и других свойств. На втором этапе всех методов проектирования с помощью расчетов и опытов в лаборатории опре­деляют количественные соотношения применяемых исходных мате­риалов. Важно найти наиболее достоверные и закономерные спосо­бы определения таких соотношений с гарантией получения бетона не только необходимого качества по показателям свойств, но и оп­тимальной структуры. На третьем этапе в методах обычно преду­смотрен выпуск пробного замеса бетонной смеси и более полная техническая характеристика качества этой смеси с возможным кор­ректированием (уточнением) проектного состава.

Изложенный в теории ИСК общий метод проектирования соста­ва и оптимальной структуры в полной мере, естественно, относится к тяжелому и другим видам цементных бетонов. Принятое в общем методе отношение с/ф становится водоцементным (В/Ц) или водо-твердым при более сложном вяжущем веществе.

Ниже изложен общий метод применительно к тяжелому плотному цементному бетону, но вначале следует уточнить общие закономер­ности из теории ИСК, на которые опирается этот метод. Среди зако­нов видное место занимает закон створа (см. рис. 3.13), а в отноше­нии механических свойств действует закон прочности оптимальных структур: произведение прочности бетона на степенную функцию фа­зового отношения (В/Ц) есть величина постоянная. Такой постоян­ной величиной служит аналогичное произведение прочности цемент­ного камня на его водоцементное отношение при оптимальной структуре, возведенное в ту же степень, т. е. R*∙ (В/Ц*) n. Прочность R* цементного камня оптимальной структуры находится опытным пу­тем при испытании образцов, хотя возможен и расчетный метод по формуле Фере: R=K[c/(c+e+a)]2, где K — константа; с, е, а — абсолют­ные объемы соответственно цемента, воды и воздуха в смеси. Как от­мечал А.В. Волженский [8], было бы более целесообразно в формуле принять абсолютный объем новообразований цемента с учетом объе­ма гелевых пор (Т. Пауэре. М., 1955).

Показатель степени n в обоих случаях отражает влияние запол­няющих компонентов и общую степень дефектности структуры бе­тона.

Из закона прочности оптимальных структур и общей формулы (3.1) следует и общая формула прочности бетонов:

(9.3)

где Rб — прочность цементного бетона оптимальной структуры, вы­раженная любой ее характеристикой (предел прочности при сжатии, предел прочности при растяжении центральном или изгибе и т. п.); Rц* —прочность цементного камня оптимальной структуры, выра­женная той же характеристикой, которая была принята для оценки прочности цементного бетона (и в том же возрасте); x — отношение фактической величины В/Ц бетона к В*/Ц цементного камня оптимальной структуры; оно равно отношению усредненных толщин (δ; δ*) пленок водной среды в свежеизготовленных материалах, т. е. x = В/Ц / В*/Ц = δ/δ*; n — показатель степени, отражающий влияние качества заполняющих материалов, дефектов структуры на прочность бетона; R* — экстремум в зависимости R = f (В/Ц), определяется опытным путем.

Для исходных материалов, применяемых в цементном бетоне, и принятой технологии изготовления бетона с ее конкретными пара­метрами и режимами все члены формулы (9.3) имеют вполне опреде­ленный физический смысл. Из формулы следует, что повышения прочности бетона можно достигнуть, во-первых, путем всемерного увеличения RЦ* — введением химических добавок типа катализато­ров или поверхностно-активных веществ, увеличения содержания кристаллической фазы на стадии твердения, дополнительным помо­лом, переходом на более высокие марки вяжущего и др. Из форму­лы (9.3) следует также, что для той же цели требуется уменьшать значение реального В/Ц и показателя степени п. Первое достигается с помощью пластифицирующих и суперпластифицирующих доба­вок, интенсификацией перемешивания смеси или другими мерами, снижающими толщину пленок водной среды на твердых частицах цемента или другого вяжущего; второе достигается фракционирова­нием и промывкой заполнителя, составлением плотных смесей, при­менением кубовидного крупного заполнителя, активированием по­верхности зерен и т. п. Большой резерв повышения прочности заключается в оптимизации технологических переделов, особенно режимов уплотнения при формова­нии и тепловых режимов при обра­ботке отформованных изделий и конструкций.

Формула (9.3) графически выра­жается гиперболической кривой в прямоугольной системе координат (R, В/Ц). Понятно, что этот график (рис. 9.7) аналогичен графической зависимости для любых ИСК (см. рис. 3.15, б). Однако на рис. 3.15, б отсутствует третья плоскость и соответственно ось аппликата (В+Ц) или (П+Щ), показанная на рис. 3.8 в виде (с+ф) и на рис. 3.15, а.

 

Рис. 9.7. Гиперболические кривые прочности бетонов оптимальной структуры; интенсивность спада прочности зависит от заполнителя: I — прочный известняк; II — гранитный щебень; III — керамзитовый гравий; IV — природный гравий (необработанный)

 

На плоскости R(В+Ц) ей соот­ветствует формула прочности бето­на оптимальной структуры:

(9.4)

Ее можно также выразить не процентах, а в долях единицы.

Объединением формул (9.3) и (9.4) получена формула (9.5) в пол­ном виде:

(9.5)

В ней нашли отражение все основные факторы, влияющие на ве­личину прочности при воздействии на бетон практически любых на­пряжений (сжатия, растяжения, сдвига и др.), а именно: содержание вяжущего вещества (В+Ц), а следовательно, и заполняющей части П+Щ =100 — (В+Ц),% по массе; водоцементное отношение В/Ц; качество (расчетная прочность) вяжущего вещества оптимальной структуры R*; пористость k, %; качество заполнителя по отношению к принятому вяжущему веществу и (В+Ц) (степенной показатель n); жесткость бетона или количество заполнителя, а следовательно и (В+Ц) (показатель т); технологические параметры и режимы; эф­фективность добавочных веществ (добавок), отражающаяся на зна­чениях В*/Ц и R*. Отсюда следует, что на технологической стадии безусловно возможно и необходимо регулировать и управлять чис­ловым значением прочности и других свойств, но при непременной оптимизации структуры, соответствующей реальной технологии бе­тона. Только при ней действуют общие и объективные законы ИСК.

Здесь необходимо снова вернуться к формуле (3.13), которая применительно к бетонам выглядит так:

(9.6)

где М = В + Ц — цементное тесто в долях единицы (по массе). Из формулы по-прежнему видно, что важно всемерно увеличивать расчетную величину активности матричного (вяжущего) вещества с соответственным уменьшением значения М, что после вычисле­ния требуемого водоцементного отношения по формуле (9.6) адек­ватно уменьшению расхода цемента в бетоне (в кг/м3) до рационального минимума. Последний обычно обусловлен высо­кой плотностью и морозостойкостью бетона. При оптимальных структурах все эти параметры качества бетона находятся в тесней­шей взаимосвязи.

После уточнения формул прочности ИСК применительно к бе­тону целесообразно изложить последовательность проектирования состава тяжелого цементного бетона, в том числе с использованием компьютерной программы.

1. Определение расчетной активности цементного камня R* как матричной части бетона и минимального значения фазового отно­шения B*/Ц, обеспечивающего, при принятых технологических условиях, оптимальную структуру. Для этого из цементного теста с 3—4 различными В/Ц, отличающимися между собой на величину 0,02—0,03, изготовляют образцы-кубики размером 10x10x10 см пу­тем уплотнения их способом, принятым в технологии производства проектируемого изделия[36]. В качестве исходного может быть приня­то В/Ц, соответствующее нормальной густоте цементного теста. По­сле графического построения функции R = f (В/Ц) находят и уточня­ют искомое значение В*/Ц при наибольшей прочности цементного камня R*.

2. Определение состава плотной смеси песка (П) и щебня (Щ). Сосуд объемом 2 л заполняют мокрым щебнем и уплотня­ют способом, принятым в технологии. После установления ста­бильного уровня щебня сосуд взвешивают, определяя фактиче­скую массу щебня. Затем в сосуд постепенно добавляют заранее взвешенный и смоченный водой песок, который заполняет пус­тоты между зернами щебня при непрерывной вибрации. После полного заполнения пустот песком определяют массу сосуда с щебнем и песком, находящимся в пустотах крупного заполните­ля, тем самым устанавливая оптимальное соотношение по массе. Полнота заполнения пустот щебня песком возрастает при при­менении мокрых материалов и определяется по максимальной массе смеси (см. рис. 3.14).

3. Определение оптимального количества исходных материалов в бетонной смеси. С этой целью выполняют две последовательно че­редующиеся операции: вспомогательную и основную.

Вспомогательная операция является экспериментальной, необ­ходимой для определения показателей степени n и m, используемых в формулах прочности и составов.

По лабораторным данным строят кривую оптимальных структур (см. рис. 3.15) при произвольно выбранном значении (В/Ц)A и находят в точке А величину RA на кривой ДВЕ, а также значение (В/Ц)B в точке В. Прочность RA имеется и на кривой KL, которой к началу экспериментов хотя еще и нет, но о ее ве­роятном существовании, как и кривой оптимальных структур из теории ИСК, известно. И тогда полученных данных RA, (В+Ц)B, (В/Ц)A достаточно, чтобы определить значения показателей сте­пени лит согласно вышеприведенным формулам, поскольку другие требуемые значения RЦ* и В*/Ц ранее были определены (на первом или втором этапах проектирования). Важно по­мнить, что величина mx переменная и при новых В/Ц или R требует уточнения.

Основная операция второго этапа проектирования оптимально­го состава бетона (как и всех других ИСК) является расчетной, причем сначала рассчитывают расход материалов (Ц, В, П, Щ) в % по массе на 1 тонну смеси, а затем пересчитывают в % по массе на 1 м3 бетонной смеси или 1 м3 бетона, например в абсолютно плотном теле.

Последовательность (алгоритм) расчета

Искомое водоцементное отношение:

Искомый расход цементного теста:

где показатель степени mx отличается от ранее полученного значения m, так как определяется при новом значении (В/Ц)иск, а не при преж­нем (В/Ц)А, а именно:

Количество цемента на 1 т смеси:

Количество воды на 1 т смеси

Количество песка и щебня определяют из условия:

при ранее найденном значении П/Щ, а именно:

— количество песка,

— количество щебня[37].

Пересчет расхода материалов на 1 м3 бетонной смеси (без уче­та воздушных пор) производится в следующей последователь­ности.

Определяем абсолютные объемы всех материалов (при условии, что известны истинные плотности ρц, ρв, ρп, ρщ, взятые в количест­вах для образования 1 т смеси):

Пишем соотношение:

если сумма соответствует 1000 кг, а 1000 л соответствует x кг, то

И тогда расход материалов на 1 м3 бетонной смеси:

цемента Ц ∙ х кг;

воды В ∙ х кг;

песка П ∙ х, кг;

щебня Щ ∙ х кг.

Контрольная проверка на плотность:

л[38].

На третьем этапе проектирования рассчитывают расход материа­ла при производственном составе, т. е. с учетом влажности песка и щебня; изготовляют контрольный замес (лучше в производственных условиях, применительно к которым были приняты технологические параметры и режимы формования и хранения) и образцы с оценкой свойств бетона в требуемом (обычно в 28-дневном) возрасте. Послед­нее производят с учетом известного логарифмического закона. На этом этапе завершается проектирование[39]; состав передается заводу.

Приведенный выше метод расчета состава бетона оптимальной структуры легко и быстро выполняется, если воспользоваться одной из компьютерных программ, а именно Microsoft EXCEL, таблица которой состоит из бесчисленного количества строк (1, 2, 3...) и ко­лонок (А, В, С, D...). Разместив в колонке «А» наименования пока­зателей свойств, а в колонке «В» соответствующие показатели этих свойств и формулы, необходимые для расчета, можно составить программу, удобную для расчета многих составов бетона с оптима­льной структурой (табл. 9.6). Числовой пример — в столбце С.

Таблица 9.6. Последовательность расчета состава бетона оптимальной структуры с использованием Microsoft EXCEL

  А В С
1 Rзад, МПа   17,5
2 В*/Ц   0,25
3 R*, МПа   32,2
4 П/Щ   0,55
5 RA   20,4
6 (В/Ц)А   0,55
7 (В+Ц)А, %    
8 n = (LOG(B3/B5)/(LOG(B6/B2)) 0,58
9 (В/Ц)иск = В2*((ВЗ/В1)^(1/В8)) 0,72
10 mх = (LOG(B3/B5))*B9/((LOG(100/B7)*B6) 0,37
11 ρц, г/см3   3,1
12 ρп, г/см3   2,4
13 ρщ, г/см3   2,5
14 (В + Ц)иск, % = 100((В9/В2)^(В8/В10)) 19,21
15 ρбс, кг/м3 = 1000000/((10*В14/(1+В9)*В1 1))+(10*В14*В9/ /(1+В9))+(10*(100-В14)*В4)/((1+В4)*В12))+ +(10*(100-В14)/((1+В4)*В13)) 2251,05
16 Ц, кг на 1 м3 = В14*В15/((1+В9)*100)) 251,87
17 В, кг на 1 м3 = В14*В9*В15/((1+В9)*100)) 180,54
18 П, кг на 1 м3 = (100-В14)*В4*В15/((1+В4)*100)) 645,33
19 Щ, кг на 1 м3 = (100-В14)*В15/((1+В4)*100)) 1173,32

 

Компьютерный метод расчета обладает большой наглядностью. Применение его позволяет после внесения в таблицу расчетных фор­мул:

мгновенно получить результаты с любой заданной точностью;

исключить ошибки, которые довольно часто возникают при ра­боте с калькулятором;

одновременно выполнять расчеты нескольких составов бетона при изменении свойств исходных материалов;

наблюдать за влиянием отдельных факторов на результаты рас­чета и анализировать их.

В настоящее время пока еще распространен подбор состава тяже­лого бетона по методу «абсолютных объемов», разработанному Б.Г. Скрамтаевым и его научной школой.

На первом этапе принимают исходные данные в отношении про­ектного класса бетона по прочности и другим свойствам. Для обо­снования данных используют технические документы — проект здания или сооружения, проект бетонных элементов, проект органи­зации работ, СНиП и другую проектную и нормативную докумен­тацию. Существенной характеристикой бетонной смеси (в зависимо­сти от проектных и производственных условий) принимается подвижность, выражаемая в сантиметрах, или жесткость, выражае­мая в секундах, и определяемые по ГОСТ 10181—81. Производится выбор заполнителей, возможных фракций при их разделении (классификации), а также размера наибольшего зерна (щебня или гравия) в зависимости от вида конструкции и способа укладки бетонной смеси. Обосновываются вид и марка цемента, его минимально допу­стимое количество в зависимости от условий работы конструкции и подвижности (жесткости) бетонной смеси. Обусловливается реко­мендуемый расход воды в зависимости от подвижности бетонной смеси, вида и крупности заполнителя, а именно: чем меньше жест­кость (выше пластичность) смеси и мельче наиболее крупный раз­мер щебня (гравия), тем больший расход воды рекомендуется при­нимать в бетонной смеси, выражаемый в л/м3.

На втором этапе определяют состав бетона расчетно-экспери-ментальным способом в такой последовательности: а) определяют водоцементное отношение (В/Ц) по данным предварительных опы­тов, которые помогают установить графическую зависимость проч­ности бетона от В/Ц при данной активности цемента и применении принятых местных заполнителей (табл. 9.7). Чаще, однако, пользу­ются формулой, которая следует из формулы прочности Боло-мея—Скрамтаева:

при В/Ц > 0,4 (9,7)

при В/Ц < 0,4 (9,7)

Таблица 9.7. Значения коэффициентов А и A1

Заполнители бетона А A1
Высококачественные 0,65 0,43
Рядовые 0,60 0,40
Пониженного качества 0,55 0,37

 

б) определяют расход воды (В) по требуемой подвижности бе­тонной смеси на основании результатов предварительных испыта­ний или по таблице, но с обязательным последующим корректиро­ванием применительно к исходным материалам (рис. 9.8);

 

Рис. 9.8. График водопотребности бетонных смесей жестких (а) и пластичных (б), приготовленных с применением портландцемента, песка средней крупности и гравия наибольшей крупности:

1 — 80 мм; 2 — 40 мм; 3 — 20 мм; 4 — 10 мм (при использовании вместо гравия щебня расход воды увеличивают на 10 л. При использовании пуццоланового портландцемента расход воды увеличивают на 15—20 л. При применении мелкого песка расход воды увеличивают на 10—20 л)

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 404; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.6.77 (0.118 с.)