Гидравлическая система шлакозолоудаления 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гидравлическая система шлакозолоудаления



В гидравлических системах шлакозолоудаления в качестве транспортирующего агента используется вода.

Гидравлическая система широко распространена в мощных энергоустановках (рис. 81), в которых применена механизированная подача шлака и золы в каналы гидрошлакоудаления. Железобетонный канал 5 прокладывается с уклоном по длине и оснащен побудительными соплами 7, обеспечивающими смыв и транспорт шлаков. Нижняя истирающая часть канала защищена от эрозии литыми плитами 6 из твердого минерала. Пульпа (смесь воды, шлака и золы) по каналу подается в багерную насосную, расположенную ниже нулевой отметки котельной. Пульпа проходит шлакодробилку 8, железоуловитель 9 и багерный насос 10, который подает пульпу в закрытый шлакозолопровод 11 или в деревянный открытый лоток, которые направляют пульпу на золоотвалы или в золоотстойники 12. Под золоотвалы используются ближайшие овраги, срок накопления в них шлаков и золы должен быть не менее 25 лет.

Непрерывно действующее механизированное шлакоудаление как при твердом, так и жидком шлаке выполняется в виде простых по устройству и надежных в работе шнеков (рис. 82).

Для предотвращения загрязнения земельных угодий золошлакоотвалами и их уменьшения необходимо увеличивать масштабы промышленного использования золы и шлака. Использование золы зависит от применяемых систем золоулавливания и золоудаления. Зола, уловленная мокрыми золоуловителями или подаваемая на золоотвалы гидравлической системой, увлажняется и поэтому теряет ряд своих ценных свойств.

Рис. 81. Схема гидромеханической оборотной системы шлакозолоудаления:

1 – топка; 2 – шнек с шлакодробилкой; 3 – золоуловитель;

4 – золосмывной аппарат; 5 – шлаковый канал; 6 – эрозионная

защита канала; 7 – побудительные сопла; 8 - шлакодробилка;

9 – железоуловитель; 10 – багерный насос; 11 – шлакозолопровод;

12 – золоотстойник

 

Рис. 82. Шнековое шлакоудаление непрерывного действия:

1 – летка; 2 – охлаждаемый водой змеевик летки; 3 – нижний коллектор экрана; 4 – шлаковый бункер; 5 – шибер; 6 – ванна с водой; 7 – шнек; 8 – дробильная камера; 9 – электродвигатель с редуктором; 10 – решетка; 11 – отводящая течка; 12 – течка канала гидрозолоудаления; 13 – ролики для откачки шлака

Сухая зола имеет обширную область применения в промышленности. Так, например, при содержании в золе окcида кальция (в сланцах, бурых углях Канско-Ачинского бассейна и др.) золу можно успешно использовать для щелочения кислых глинистых почв и в качестве удобрения, поскольку в золе содержатся калий и микроэлементы. Такая зола находит применение в производстве цемента. Наконец, зола используется в строительных растворах асфальтобетонных покрытий шоссейных дорог.

 

ДЫМОВЫЕ ТРУБЫ

Дымовые трубы служат для удаления продуктов сгорания топлива из газоходов котла и рассеивания в атмосфере содержащихся в них вредных веществ (пыль, окcиды серы, азота и т.п.)

Для котельной проектируется обычно одна, общая для всех установленных котлов, дымовая труба. Дымовые трубы сооружаются по типовым проектам из кирпича или железобетона. Применение металлических дымовых труб диаметром больше 1 м допускается только при технико-экономической целесообразности такого решения.

Высота дымовой трубы, необходимая для создания нормативной естественной тяги, определяется из условий равенства силы тяги и суммы сопротивлений, возникающих при движении газов по газоходам котлоагрегата и в дымовой трубе:

, кгс/м2,

где S - необходимая сила естественной тяги дымовой трубы, кгс/м2; Н - высота дымовой трубы, м; ρов, ρог - плотности воздуха и газа при нормальных условиях, кг/м3; tв, tг - температура воздуха и средняя температура дымовых газов, ºС; Вд - минимальное барометрическое давление данного района, мм рт.ст.

При известной величине необходимой естественной тяги S высота дымовой трубы Н определяется по приведенной выше формуле.

При расчете рассеивания в атмосфере вредных веществ, принимая максимально допустимые санитарными нормами концентрации золы, оксидов серы, азота и углерода у поверхности Земли, следует учесть выбросы в окружающую среду абсолютных количеств веществ для всех промышленных предприятий, котельных, ТЭЦ и автомобильного транспорта конкретного города или района, а также учесть существующее фоновое загрязнение атмосферы другими источниками.

Поверочный расчет на загазованность и запыленность должен производиться с учетом всех котлов, присоединенных к дымовой трубе не только в настоящее время, но и при расширении котельной.

Значение максимальной концентрации вредного вещества на уровне Земли определяется по формуле

, мг/м3,

где А - коэффициент, зависящий от температурной стратификации атмосферы, (с-2/3 · ºС1/3); М - количество вредного вещества, выбрасы-ваемого в атмосферу, г/с; F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосфере; m, n - безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья дымовой трубы; Н - высота дымовой трубы над уровнем земли, м; V - объем выбрасываемой газовоздушной смеси, м3/с; ΔТ - разность температуры выбрасываемой газовоздушной смеси Тг и температуры окружающего атмосферного воздуха Тв , ºС.

Высота дымовой трубы, обеспечивающая рассеивание вредных выбросов, выбирается из условия, что наибольшая концентрация вредного вещества См (мг/м3) в приземном слое атмосферы не должна превышать предельно допустимой концентрации данного вредного вещества в атмосферном воздухе (ПДК), установленной «Санитарными нормами проектирования промышленных предприятий», т.е. См ≤ ПДК.

При одновременном совместном присутствии в атмосфере нескольких вредных веществ их безразмерная суммарная концентрация q не должна превышать 1 при расчете по формуле:

,

где С1, С2, …, Сn - концентрации вредных веществ в атмосферном воздухе в одной и той же точке местности, мг/м3 ; ПДК1, ПДК2, …, ПДКn – соответствующие максимальные предельно допустимые концентрации вредных веществ в атмосферном воздухе, мг/м3.

Для определения суммарного выброса оксидов дымовыми газами необходимо выполнить расчеты количества выбрасываемых оксидов серы и азота:

, г/с,

где Впар, Ввод - расход топлива на паровые и водогрейные котлы, т/ч; - коэффициент, принимаемый при работе котла на твердом топливе 0,1; на мазуте – 0,02; - содержание серы в топливе, %;

, г/с,

где kпар = 1,9-4,4; kвод=1,3-2,3 - коэффициенты выхода оксидов азота на 1 т условного топлива, которые зависят от производительности парового или водогрейного котла и вида сжигаемого топлива.

Суммарный выброс оксидов серы и азота

, г/с.

Предельно допустимый выброс вредного вещества в атмосферу (ПДВ) от одиночного источника, при котором обеспечивается концентрация, не превышающая ПДК в приземном слое воздуха, определяется по формуле:

, г/с.

Высота дымовых труб должна приниматься 30, 45, 60, 75, 90, 120, 150, 180 м.

Для определения диаметра дымовой трубы рекомендуется принимать для расчетов следующие скорости газов на выходе, м/с:

при естественной тяге 15-20;

при искусственной тяге:

при высоте труб до 100 м - 20-30;

100-180 м - 35-40.

Диаметры выходных отверстий кирпичных и железобетонных дымовых труб определяются на основании изложенных ниже требований и принимаются 1,2; 1,5; 1,8; 2,1; 2,4; 3,0; 3,6; 4,2; 4,8; 5,4; 6,0; 6,6; 7,2; 7,8; 8,4; 9,0; 9,6 м. Минимальный диаметр выходных отверстий кирпичных труб 1,2 м, монолитных железобетонных – 3,6 м.

Для предупреждения проникновения дымовых газов в толщу стен кирпичных и железобетонных труб не допускается положительное статическое давление на стенки ствола дымовой трубы. Для этого необходимо соблюдать условия R<1, где R – определяющий критерий, равный:

,

где λ - коэффициент сопротивления трению; i - постоянный уклон внутренней поверхности трубы (для расчета кирпичных и железобетонных труб принимается i = 0,02); ρв, ρг - плотности наружного воздуха и дымовых газов при расчетном режиме, кг/м3; dо - диаметр выходного отверстия трубы, м; hо - динамическое давление газа в выходном отверстии трубы

, кгс/м2,

где ωо – скорость газов в выходном отверстии трубы, м/с; g – ускорение силы тяжести, м/с2.

Подводящие газоходы в месте примыкания к дымовой трубе необходимо проектировать прямоугольной формы. Выбор конструкции защиты внутренней поверхности ее ствола от агрессивного воздействия среды должен выполняться исходя из условий сжигания основного и резервного вида топлива.

 

ВОДОПОДГОТОВКА

Показатели качества воды

Используемая в котельных установках и теплосетях исходная вода поступает или из хозяйственно-питьевых водопроводов, или из артезианских скважин, или, наконец, из поверхностных водоемов, в зависимости от чего в ней содержатся различные примеси.

Примеси, содержащиеся в природной воде, по степени крупности их частиц подразделяются на три группы:

1. Механические взвешенные вещества в виде частиц песка, глины и др., размером от 0,2 мкм и выше, способные с течением времени отстаиваться;

2. Коллоидно-растворенные - соединения железа, алюминия, кремния и др., размером от 0,001 до 0,2 мкм, не отстаивающиеся даже в течение длительного времени;

3. Истинно-растворенные - состоящие из электролитов (веществ, молекулы которых распадаются на ионы, в частности карбонаты кальция и магния) и неэлектролитов (веществ, не распадающихся на ионы: кислород, азот, углекислый газ).

В зависимости от тех или иных примесей изменяются показатели качества воды.

Основными показателями качества воды являются:

1) прозрачность - содержание в 1 л воды взвешенных частиц, легко удаляемых при фильтрации (мг/л);

2) сухой остаток - осадок, состоящий из минеральных и органических примесей, полученный после выпаривания 1 л профильтрованной воды и после его высушивания (мг/л);

3) окисляемость - характеризует степень загрязнения воды органическими веществами. Она выражается в мг/л кислорода или окислителя перманганата калия (КМnО4), необходимых для окисления органических веществ, содержащихся в 1 л воды;

4) жесткость - содержание в 1 л воды растворенных солей кальция и магния; выражается в миллиграмм-эквивалентах (мг-экв/л). Миллиграмм-эквивалент – это отношение содержания компонента в миллиграммах к его атомному весу;

5) щелочность - содержание в 1 л воды гидратов, карбонатов и бикарбонатов, выражается в миллиграмм-эквивалентах (мг-экв/л);

6) степень кислотности или щелочности - определяется концентрацией водородных или гидроксильных ионов, образующихся при диссоциации (расщеплении) воды; выражается величиной рН. При рН=7 водный раствор нейтрален, чем ближе рН к нулю, тем сильнее кислотность, а чем ближе рН к 14, тем сильнее щелочность;

7) содержание растворенных в воде агрессивных газов, вызывающих коррозию, (О2, СО2), мг/л.

Основной задачей подготовки воды в котельных является борьба с коррозией и накипью.

Коррозия поверхностей нагрева котлов, подогревателей и трубопроводов тепловых сетей вызывается кислородом и углекислотой, которые проникают в систему вместе с питательной и подпиточной водой.

При нагреве и испарении воды из нее выпадают различные растворенные соли, часть из которых осаждается на поверхностях нагрева в виде плотного слоя с низкой теплопроводностью, называемого накипью. Требования, предъявляемые к воде, используемой в паровых и водогрейных котельных, различны, так как в паровых котлах вода испаряется, а в водогрейных только нагревается.

Наиболее важным показателем качества воды является ее жесткость, т.е. содержание солей, вызывающих накипеобразование (соли кальция и магния). Различается жесткость постоянная (некарбонатная), обусловливаемая наличием в воде хлоридов, сульфатов и других некарбонатных солей кальция и магния, и временная (карбонатная), обусловливаемая присутствием в воде бикарбонатов кальция Са(НСО3)2 и магния Mg(НСО3)2.

Общая жесткость воды (Жо) состоит из карбонатной (временной) жесткости (Жк) и некарбонатной (постоянной) жесткости (Жн).

Жо = Жк + Жн, мг-экв/л.

Щелочность представляет собой сумму содержащихся в воде бикарбонатов, карбонатов, гидратов и солей других слабых кислот, вступающих в реакцию с соляной и серной кислотой с образованием хлористых или сернокислых солей щелочных и щелочно-земельных металлов. Различают щелочности: бикарбонатную (Щб), определяемую анионами НСО3 -; карбонатную (Щк), определяемую анионами СО32 - ; гидратную (Щг), определяемую анионами ОН - и др.

С известным приближением можно считать, что практически в одном растворе совместно могут быть либо гидратная щелочность с карбонатной, либо карбонатная с бикарбонатной. Щелочность измеряется теми же единицами, что и жесткость, мг-экв/л и мкг-экв/л.

При относительно высокой гидратной щелочности котловая вода приобретает агрессивные свойства по отношению к металлу котла, вызывая в нем межкристаллитную коррозию.

Необходимое качество воды зависит от типа котла и вида топлива, нормы качества питательной воды приведены в табл. 5.

Таблица 5



Поделиться:


Последнее изменение этой страницы: 2016-04-18; просмотров: 469; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.43.206 (0.04 с.)