Формирование кетоновых тел. Причины и последствия кетоза. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формирование кетоновых тел. Причины и последствия кетоза.



При состояниях, сопровождающихся снижением глюкозы крови, клетки органов и тканей испытывают энергетический голод. Так как окисление жирных кислот процесс "трудоемкий", а нервные клетки вообще неспособны окислять жирные кислоты, то печень облегчает использование этих кислот тканями, заранее окисляя их до уксусной кислоты и переводя последнюю в транспортную форму – кетоновые тела.

К кетоновым телам относят три соединения близкой структуры – ацетоацетат, 3-гидроксибутират и ацетон.

Строение кетоновых тел

Стимулом для образования кетоновых тел служит поступление большого количества жирных кислот в печень. Как уже указывалось, при состояниях, активирующих липолиз в жировой ткани, не менее 30% образованных жирных кислот задерживаются печенью. К таким состояниям относится голодание, сахарный диабет I типа, длительные физические нагрузки. Так как синтез ТАГ в этих условиях невозможен, то жирные кислоты из цитозоля попадают в митохондрии и окисляются с образованием кетоновых тел.

Для понимания причин развития кетонемии при различных ситуациях необходимо понимать роль оксалоацетата для регуляции цикла трикарбоновых кислот. При голодании соотношение инсулин/глюкагон низкое и поэтому в печени активно идет глюконеогенез, для которого используется оксалоацетат. Поэтому при голодании жирные кислоты, поступающие в большом количестве в печень, не сгорают в ЦТК, а уходят в синтез кетоновых тел. При длительной мышечной нагрузке резервы гликогена в печени истощаются, развивается тенденция к гипогликемии и секретируется глюкагон, который усиливает глюконеогенез, при этом количество оксалоацетата снижается, и жирные кислоты, попавшие в печень, будут окисляться с образованием кетоновых тел.

Кроме отмеченных ситуаций, количество кетоновых тел в крови возрастает при алкогольном отравлении и потреблении жирной пищи. При богатой жирами диете, особенно у детей, жирные кислоты не успевают включиться в состав ТАГ и ЛПОНП и частично переходят в митохондрии, что увеличивает синтез кетоновых тел. При алкогольном отравлении субстратом для синтеза кетонов является ацетил-SКоА, синтезируемый при обезвреживании этанола.

В обычных условиях синтез кетоновых тел также идет, хотя в гораздо меньшем количестве. Для этого используются как жирные кислоты, так и безазотистые остатки кетогенных и смешанныхаминокислот.

 

Наиболее частой причиной развития кетоза, а впоследствии – и кетонурии, является сахарный диабет. При сахарном диабете 1-го типа, с одной стороны, имеет место дефицит инсулина, с другой – избыток контринсулярных гормонов (глюкагона, катехоламинов, кортизола). В условиях недостатка инсулина активируются процессы гликолиза, гликогенолиза, липолиза. Массивный липолиз приводит к быстрому увеличению концентрации свободных жирных кислот в крови, из которых в печени под действием глюкагона синтезируются кетоновые кислоты

Биосинтез высших жирных кислот. Роль ацетил-КоА в биосинтезе высших жирных кислот, транспорт через митохондриальную мембрану.

Биосинтез жирных кислот можно рассматривать как процесс, складывающийся из 3 этапов.

 

I. Транспорт ацетил-КоА в цитозоль из митохондрий

II. Образование малонилКоА

III. Конденсация этих молекул и их восстановление с образовани-ем высших насыщенных жирных кислот, главным образом пальмитино-вой.

 

I этап. Образование ацетил-КоА происходит в митохондриях,а ихмембрана непроницаема для ацетил-КоА. Перенос ацетильных групп происходит при помощи цитрата (цитратный челночный механизм).

 

Митохондрии

 

ацетил-КоА + ЩУК

 

Цитратсинтаза

 

цитрат + HSKoA

 

Транслоказа

 

цитозоль                                        цитрат + АТФ + HSKoA

 

Цитратлиаза

 

ацетил-КоА + АДФ + Рн + ЩУК


 

 


ЩУК может вернуться в митохондрии с помощью своей транслоказы, но чаще она восстанавливается до малата с участием малатдегид-рогеназы (МДГ).

                                                                                        МДГ

 

цитозоль ЩУК+НАДН+Н +  малат + НАД +

 

Малат декарбоксилируется НАДФ-зависимой малатдегидро-

геназой (маликфермент):

МДГ

Малат + НАДФ пируват + СО 2 + НАДФН 2

 

Образующийся НАДФН2 используется в дальнейшем для синтеза жирных кислот.

Биосинтез жирных кислот. Общие положения. Формирование малонил-КоА. АПБ, биологическая роль. Стадии удлинения цепочки жирной кислоты.

II этап. Ацетил-КоА карбоксилируется под действием ацетил-КоА-карбоксилазы, сложного фермента, коферментом которого служит витамин биотин.

 

Эта реакция лимитирует скорость всего процесса синтеза жирных кислот.

 

 

III этап протекает при участии мультиферментного пальмитат-

синтазного комплекса. Он состоит из двух полипептидных цепей.Каждая полипептидная цепь содержит все 6 ферментов синтеза (трансацилаза, кетоацилсинтаза, кетоацилредуктаза, гидратаза, еноилредуктаза, тиоэстераза).

Ферменты связаны между собой ковалентными связями, ацилпереносящий белок (АПБ) является также частью полипептидной цепи, но его функция связана только с переносом ацильных радикалов.

В процессе синтеза важную роль играют тиогруппы. Одна из них принадлежит 4-фосфопантотеину, входящему в состав АПБ (центральная)

 

и вторая – цистеину кетоацилсинтазы (периферическая). Функциональная единица синтеза состоит из половины одного мономера, взаимодействующего с комплементарной половиной второго мономера, где центральная SH-группа одного мономера очень близка к периферической SH-группе другого.

и Т.е. на синтазном комплексе синтезируются одновременно 2 жирные кислоты и только димер активен. Перенос субстрата от фермента к ферменту происходит при участии АПБ.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 70; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.69.152 (0.012 с.)