Нарушение обмена веществ при инсулиновой недостаточности. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нарушение обмена веществ при инсулиновой недостаточности.



Сахарный диабет - биохимическое заболевание

Страница 1 из 3

Сахарный диабет (СД) – полиэтиологическое заболевание, связанное:

· со снижением количества β клеток островков Лангерганса,

· с нарушениями на уровне синтеза инсулина,

· с мутациями, приводящими к молекулярному дефекту гормона,

· со снижением числа рецепторов к инсулину и их аффинности в клетках-мишенях,

· с нарушениями внутриклеточной передачи гормонального сигнала.

Выделяют два основных типа сахарного диабета:

1. Инсулинзависимый сахарный диабет (ИЗСД, диабет 1 типа) – диабет детей и подростков (ювенильный), его доля составляет около 20% от всех случаев СД.

2. Инсулиннезависимый сахарный диабет (ИНЗСД, диабет 2 типа) – диабет взрослых, его доля – около 80%.

Подразделение типов СД на взрослый и ювенильный не всегда корректно, так как встречаются случаи развития ИНЗСД в раннем возрасте, также ИНЗСД может переходить в инсулинзависимую форму.

Диагностика сахарного диабета

Сравнительная характеристика типов сахарного диабета

  Инсулинзависимый СД Инсулиннезависимый СД
Возраст (чаще всего) Дети, подростки Средний, пожилой
Проявление симптомокомплекса Острое (несколько дней) Постепенное (годы)
Внешний вид (до лечения) Худощавое У 80% ожирение
Снижение массы тела (до лечения) Обычно есть Не характерно
Концентрация инсулина в крови Снижена в 2-10 раз В норме или повышена
Концентрация С-пептида Резко снижена или отсутствует В норме или повышена
Семейный анамнез Отягощен редко Часто отягощен
Зависимость от инсулина Полная Только у 20%
Склонность к кетоацидозу Есть Нет

Диагноз сахарного диабета ставится если:

1. Имеются классические симптомы – полиурия, полидипсия, для ИЗСД – снижение массы тела.

2. Концентрация глюкозы натощак в нескольких повторных анализах капиллярной крови более 6,1 ммоль/л.

3. Обнаруживается глюкозурия, в случае ИЗСД - дополнительно и кетонурия.

4. Изменена концентрация проинсулина, инсулина и С-пептида. Для диабета 1-го типа характерно снижение или полное отсутствие этих показателей, при диабете 2-го типа они в норме или повышены.

5. Не для диагностики, но для мониторинга длительной гипергликемии используется определение HbA1c (гликозилированный гемоглобин).

6. В сомнительных (и только!) случаях, т.е. при отсутствии симптомов в сочетании неоднозначностью результатов анализов – рекомендуются глюкозотолерантный тест (ТТГ, нагрузочные пробы с глюкозой):

· самая распространенная проба заключается в приеме испытуемым глюкозы per os из расчета 1,5-2,0 г на кг массы тела. Пробы крови отбирают непосредственно перед приемом глюкозы (нулевая минута, "тощаковый" уровень) и далее через 30, 60, 90 и 120 минут, при необходимости на 150 и 180 минутах.

· в норме в относительных единицах повышение концентрации глюкозы составляет 50-75% к 60 минуте исследования и снижается до исходных величин к 90-120 минутам. В абсолютных единицах по рекомендации ВОЗ подъем уровня глюкозы должен быть не более 7,5 ммоль/л при исходном 4,0-5,5 ммоль/л.

· по результатам теста толерантности к глюкозе определятся тип "сахарной кривой". При сахарном диабете наблюдается гипергликемическая кривая, т.е. толерантность к глюкозе понижена.

 

Энергетический обмен

Обмен веществ, основные этапы унификации энергетического материала.

Метаболизм представляет собой высоко координированную и целенаправленную клеточную активность, обеспеченную участием многих взаимосвязанных ферментативных систем, и включает два неразрывных процесса анаболизм и катаболизм.

Он выполняет три специализированные функции:

1. Энергетическая – снабжение клетки химической энергией,

2. Пластическая – синтез макромолекул как строительных блоков,

3. Специфическая – синтез и распад биомолекул, необходимых для выполнения специфических клеточных функций.

Анаболизм

Анаболизм – это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из малых молекул-предшественников. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ.

Цикл НАДФ-НАДФН

Также для биосинтеза некоторых веществ (жирные кислоты, холестерол) требуются богатые энергией атомы водорода – их источником является НАДФН. Молекулы НАДФН образуются в реакциях окисления глюкозо-6-фосфата в пентозосфатном путиили декарбоксилирования яблочной кислоты малик-ферментом. В реакциях анаболизма НАДФН передает свои атомы водорода на синтетические реакции и окисляется до НАДФ. Так формируется НАДФ-НАДФН -цикл.

Катаболизм

Катаболизм – расщепление и окисление сложных органических молекул до более простых конечных продуктов. Оно сопровождается высвобождением энергии, заключенной в сложной структуре веществ. Большая часть высвобожденной энергии рассеивается в виде тепла. Меньшая часть этой энергии "перехватывается" коферментами окислительных реакций НАД и ФАД, некоторая часть сразу используется для синтеза АТФ.

Атомы водорода, высвобождаемые в реакциях окисления веществ, в основном используются клеткой по двум направлениям:

· на анаболические реакции в составе НАДФН (например, синтез жирных кислот и холестерина),

· на образование АТФ в митохондриях при окислении НАДН и ФАДН 2.

Необходимо заметить, что молекулы НАДФН могут идти не только на реакции анаболизма. Например, они активно привлекаются к реакциям антиоксидантной защиты для нейтрализации свободных радикалов, а в фагоцитирующих клетках, наоборот, требуются для синтеза супероксид анион-радикала, используются для нейтрализации аммиака в реакции синтеза глутамата в реакции восстановительного аминирования и в ряде других процессов.

Весь катаболизм условно подразделяется на три этапа, включающие реакции общих и специфических путей.

Первый этап

Происходит в кишечнике (переваривание пищи) или в лизосомах (самообновление клеток) при расщеплении уже ненужных или лишних молекул. При этом освобождается около 1% энергии, заключенной в молекуле. Она рассеивается в виде тепла.

Второй этап

Вещества, образованные при внутриклеточном гидролизе или проникающие в клетку из крови, на втором этапе обычно превращаются

· в пировиноградную кислоту (моносахариды в гликолизе),

· в ацетил-SKoA, в пируват и другие кетокислоты (в катаболизме аминокислот),

· в ацетил-SКоА (при β-окислении жирных кислот).

Локализация второго этапа – цитозоль и митохондрии. На этом этапе выделяется около 30% энергии, заключенной в молекуле, и при этом запасается около 13% от всей энергии вещества (или примерно 43% от выделенной на этом этапе энергии).

Схема общих и специфичных путей катаболизма
(более подробная схема представлена здесь)

Под специфичными путями катаболизма понимают реакции, осуществляемые специфичными ферментами в специфичных, для разных классов веществ, реакциях 1 и 2 этапов. После того, как эти процессы закончатся, образуются пируват и ацетил-SКоА (в основном) и начинаются общие пути превращений. Подразумевается, что независимо от источника происхождения пирувата и ацетил-SKoA (из аминокислот, жирных кислот или моносахаридов) они попадают в общий путь катаболизма – 3 этап биологического окисления.

Третий этап

Все реакции этого этапа идут в митохондриях. Ацетил-SКоА (и кетокислоты) включается в реакции цикла трикарбоновых кислот, где углероды веществ окисляются до углекислого газа. Выделенные атомы водорода соединяются с НАД и ФАД, восстанавливают их и после этого НАДН и ФАДН2 переносят водород в цепь ферментов дыхательной цепи, расположенную на внутренней мембране митохондрий. Сюда же отдают свои атомы водорода молекулы НАДН и ФАДН2, образованные на втором этапе (гликолиз, окисление жирных кислот и аминокислот). В третьем этапе выделяется до 70% всей энергии вещества. Из этого количества усваивается почти две трети (66%), что составляет около 46% от общей. Таким образом, из 100% энергии окисляемой молекулы клетка запасает больше половины – 59%.

Соотношение выделенной и запасенной энергии
при биологическом окислении

На внутренней мембране митохондрий в результате процесса под названием " окислительное фосфорилирование " образуется вода и главный продукт биологического окисления – АТФ.

Роль АТФ

Энергия, высвобождаемая в реакциях катаболизма, запасается в виде связей, называемых макроэргическими. Основной и универсальной молекулой, которая запасает энергию и при необходимости отдает ее, является АТФ.

Все молекулы АТФ в клетке непрерывно участвуют в каких-либо реакциях, постоянно расщепляются до АДФ и вновь регенерируют.

Существует три основных способа использования АТФ:

· биосинтез веществ,

· транспорт веществ через мембраны,

· изменение формы клетки и ее движение.

Эти процессы вкупе с процессом образования АТФ получили название АТФ-цикл:



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 40; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.39.32 (0.011 с.)