Из чего состоит термоакустический Двигатель с бегущей волной. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Из чего состоит термоакустический Двигатель с бегущей волной.



 


Рис.2. Обозначения элементов одноступенчатого двигателя

Про теплообменники, регенератор и резонатор уже всё понятно. Но обычно в двигатель ставят ещё вторичный холодный теплообменник. Его основная цель — не допустить прогрева полости резонатора горячим теплообменником. Высокая температура газа в резонаторе плоха тем, что у горячего газа выше вязкость, а значит выше и потери в волне, затем высокая температура снижает прочность резонатора и ещё зачастую есть необходимость поставить в резонатор далеко не жаропрочную аппаратуру, как например пластиковый турбогенератор, который не выдержит нагрева. Полость между горячим теплообменником и вторичным холодным называют термальной буферной трубкой. Она должна быть такой длины, чтобы тепловое взаимодействие между теплообменниками не было существенным.

Наибольшая эффективность достигается при установке турбины в резонатор со стороны горячего теплообменника, то есть сразу за вторичным холодным.

Одноступенчатый двигатель изображённый на рис.2 называется двигателем Цеперли, так как его конструкцию впервые придумал Питер Цеперли.


Рис.3. Схема четырёхступенчатого двигателя

Одноступенчатую конструкцию можно улучшить. Де Блок в 2010 году предложил вариант четырёхступенчатого двигателя (рис. 3). Он увеличил диаметр теплообменников и регенератора относительно диаметра резонатора, для того чтобы уменьшить скорость газа в области регенератора и тем самым снизить трение газа о регенератор, а также увеличил количество ступеней до четырёх. Увеличение количества ступеней приводит к уменьшению потерь акустической энергии. Во первых сокращается длина резонатора для каждой ступени и потери энергии в резонаторе уменьшаются. Во вторых уменьшается разность между фазами скорости и давления в зоне регенератора (убирается стоячая компонента волны). При этом уменьшается минимальная разность температур, необходимая для запуска двигателя.

Так — же можно построить двигатель с двумя, с тремя и более чем с четырьмя ступенями. Выбор количества ступеней — это дискуссионный вопрос.

При прочих равных, мощность двигателя определяется диаметром ступени, чем он больше, тем больше мощность. Длину корпуса двигателя следует выбирать такую, чтобы частота колебаний желательно была менее 100 Гц. При слишком коротком корпусе — то есть, при слишком высокой частоте колебаний потери акустической энергии увеличиваются.

Далее я опишу постройку такого двигателя.


Создание двигателя


Двигатель, который я буду описывать — это тестовый мини прототип. Не планируется, что он будет вырабатывать электроэнергию. Он нужен для отработки технологии преобразования тепловой энергии в акустическую, и слишком мал, для того чтобы встроить в него турбину и вырабатывать электроэнергию. Для выработки электроэнергии готовиться более крупный прототип.


Рис. 4. Корпус

Итак, изготовление я начал с корпуса. Он состоит из 4 — х ступеней и 4 — х резонаторов и топологически представляет собой полый бублик согнутый два раза пополам на 180 градусов. Ступени соединяются с резонаторами при помощи фланцев. Весь корпус сделан из меди. Это нужно для того чтобы иметь возможность быстро впаять что либо в корпус и так же быстро выпаять. Резонаторы изготовлены из медной трубки внешним диаметром 15 мм и внутренним 13 мм. Ступень из трубы внешним диаметром 35 мм и внутренним 33 мм. Длина ступени от фланца до фланца — 100 мм. Суммарная длина корпуса — 4 м.


Рис. 5. Горячий (слева) и холодный (справа) теплообменники

Затем сделал теплообменники. Это пластинчатые теплообменники. Основные элементы конструкции данных теплообменников — это вот такие медные пластины и шайбы


Рис. 6. Медная пластина и медная шайба

У горячего теплообменника электрический нагрев осуществляется при помощи установленной в центральное отверстие нихромовой нити. Максимальная тепловая мощность 100 Вт. Как бы не было парадоксально, использовать электричество для запуска электрогенератора, но это очень удобно для тестового прототипа. Использование нагрева электричеством, а не газом ли какой либо другой тепловой энергией избавляет от трудностей с подсчётом входящей тепловой энергии, так как в случае электронагрева достаточно просто умножить напряжение на силу тока и будет точно известна входящая тепловая мощность. Точно измерить входящую тепловую мощность — это важно для подсчёта КПД.

Холодный теплообменник охлаждается пропусканием сквозь центральный канал охлаждающей жидкости, в данном случае воды. Нагретая в теплообменнике вода поступает во внешний охладительный радиатор, в качестве которого используется радиатор от печки такого суперкара как «Жигули»


Рис. 7. Медный радиатор отопителя от ВАЗ-2101-8101050

После прохождения через охладительный радиатор вода возвращается в холодный теплообменник. Циркуляцию воды осуществляет циркуляционный насос постоянного тока Topsflo Solar DC Circulation Pump 5 PV.


Рис. 8. Циркуляционный водяной насос 12В


Рис. 9. Одна из сеток регенератора


Рис. 10. Детали, входящие в состав одной ступени


Рис. 11. Ступень в разрезе

На данных рисунках можно видеть, что кроме теплообменников и регенератора, внутри ступени присутствуют алюминиевые вставки. Они нужны просто для того чтобы можно было вывести провода для горячего теплообменника и штуцеры для холодного теплообменника через стенку трубы. Без этих вставок выводить пришлось бы через фланцы, что очень неприятно или даже невозможно. Так что в каждой из вставок имеется отверстие диаметром 13 мм, точно такое же как диаметр резонатора и таким образом вставка по акустическим свойствам ничем не отличается от резонатора — то есть является его продолжением.


Рис. 12. Алюминиевая вставка в корпусе

Так выглядит холодный теплообменник внутри корпуса:


Рис. 13. Впаянный теплообменник




Поделиться:


Последнее изменение этой страницы: 2021-06-14; просмотров: 154; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.15.94 (0.009 с.)