Биологическое оружие перед подписанием Конвенции 1972 г 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биологическое оружие перед подписанием Конвенции 1972 г



 

Масштабирование производства биологических агентов и испытаний биологического оружия. Изучение поражающего действия мелкодисперсных аэрозолей агентов биологического оружия. Судьба проникших в дыхательные пути человека частиц биологического аэрозоля. Технические средства применения аэрозолей агентов биологического оружия. Аэробиология мелкодисперсного аэрозоля. Отдел специальных операций в Форт Детрике. Насекомые как переносчики возбудителей опасных инфекционных болезней. Поражение растений. Взгляды на ведение биологической войны. Конвенция 1972 г. Уничтожение биологического оружия. Форт Детрик после уничтожения биологического оружия.

 

Период разработки БО, начавшийся после завершения войны на Корейском полуострове, можно назвать аэробиологичееким. Развитие биотехнологии сулило разработчикам БО тонны бактерий и биологических рецептур. Им теперь стал понятен физический механизм инфицирования людей биологическими аэрозолями. В свою очередь, знание размеров частиц аэрозоля, способного проникать в глубокие отделы легких человека, оказало революционизирующие влияние на разработку БО. Подход к разработке биологических боеприпасов и авиационных диспергирующих приборов принципиально поменялся. Теперь такие устройства должны были создавать аэрозоль с размером частиц дисперсной фазы до 5 мкм; боеприпасы, позволявшие лишь привести человека в контакт с как можно большим количеством не потерявших жизнеспособности микроорганизмов, ушли в прошлое. Но самих разработчиков БО по прежнему не оставляло ощущение, что они ведут еще пока какие то предварительные эксперименты.

Масштабирование производства биологических агентов и испытаний БО. В средине 1950 х гг. технологии глубинного культивирования бактерий окончательно вытеснили простые технологии выращивания на плотных питательных средах, использовавшиеся «первопроходцами» БО в 1930 1940 х гг. Поданным СИПРИ, для успешного ведения биологической войны военный потенциал развитой страны средних размеров должен обеспечивать возможность производства, по меньшей мере, 100 партий соответствующих биологических материалов, каждой из которых должно быть достаточно для осуществления бактериологического нападения в течение года или за более короткий отрезок времени. При меньших производственных мощностях существовала опасность очень медленного пополнения израсходованных биологических агентов. Кроме того, должна обеспечиваться надежность в отношении выживаемости или сохранности биологических агентов при хранении. Это значит, что страна, решившая иметь в своем арсенале «мощное оружие бедных», должна была строить заводы по производству опасных микроорганизмов весьма значительных размеров и обеспечивать более или менее непрерывную работу большого числа ферментеров (The Problem…, 1970).

Некоторое представление об организации разработки и производства агентов БО в стране, реально готовившейся к биологической войне, дают опубликованные в открытой печати данные об арсенале Пайн Блафф, находящемся в штате Арканзас (США). Американской армией здесь было организовано производство отравляющих веществ, дымовых смесей, зажигательных составов, биологических агентов и соответствующих боеприпасов в лабораторных, полупроизводственных и ограниченных производственных масштабах, а также хранение некоторых готовых боеприпасов. Количество сотрудников – около 1800 человек. В 1966 г. площадь территории арсенала составляла около 6 тыс. га, на этой территории располагалось 945 зданий и сооружений, стоимость которых вместе с оборудованием оценивалась в те годы в 136 млн долларов. Среднее суточное потребление воды было эквивалентно потреблению города с населением 33 тыс. человек, а суточный расход – расходу города с населением 13 тыс. человек (The Problem…, 1970).

Испытания БО – неотъемлемая часть исследований по его созданию. Они были направлены, главным образом, на получение данных для оценки и подтверждения или отрицания постулатов и теорий, разрабатываемых в условиях лаборатории, расчетных параметров оборудования и математических моделей. Испытания БО, подобно всем элементам программы БО, были уникальной областью исследований. Проведение исследований по изучению поведения искусственно распыленного в атмосфере материала создаваемых биологических рецептур, в начале 1950 х гг. не представляло хорошо изученной и слаженной научной дисциплины. Данных о факторах биологического отмирания и (или) физической гибели микроорганизмов при обычных колебаниях погоды, о количестве микроорганизмов, необходимых, для развития инфекции, о способах или оборудовании для их распространения было мало, либо они вообще отсутствовали. В связи с этим военным ученым необходимо было провести большой объем исследований, имеющих цель – сбор необходимых научных и технических данных для подтверждения теоретических выводов и заполнения пробелов в знаниях, а также для определения степени уязвимости от БО личного состава вооруженных сил, боевой техники, средств индивидуальной и коллективной защиты (US Army activity… 1977).

Испытания БО в те годы подразделялись на лабораторные (небольшого масштаба) камерные (среднего масштаба) и полевые (большого масштаба). Каждую из этих категорий, в свою очередь, делили на испытания с использованием агентных имитаторов и патогенных микроорганизмов. Дальнейшая классификация производилась по объекту испытания, т. е. испытание механических устройств, таких как детекторы или пробоотборники, или испытания на живых объектах (люди, животные или растения), оценка эффективности вакцин, анатоксинов и т. п. (рис. 1.44).

Рис. 1 44. Схема испытаний БО и средств противобиологической защиты, практиковавшихся с начала 1950 х гг. в США. По US Army activity… (1977)

 

В США полевые испытания химического и биологическое оружия производились, главным образом, на полигоне Дагуэй (шт. Юта). Территория полигона имела площадь около 1500 кв. миль, периметр около 210 км. Число сотрудников: 1000 гражданских. 600 военных (Hersh S., 1968). В связи с недостаточными размерами полигона Дагуэй, американские военные в те годы проводили испытания БО на различных островах Тихого океана, в нейтральных водах в юго западной части Тихого океана и в Форте Грили на Аляске. Сообщалось об испытании Соединенными Штатами БО в открытых водах юго западной части Тихого океана, у атолла Эниветок (Emwetok) на Маршалловых островах и об опытах с насекомыми, переносчиками биологических агентов, проведенными на острове Бейкер Айленд в средней части Тихого океана в 1965 г.

В Канаде полигон для испытания химического и биологического оружия существовал при Канадском научно исследовательском центре защиты в Саффиде (шт. Альберта). Площадь полигона составляла 1000 кв. миль.

В Великобритании общая площадь научно исследовательского центра а Портоне вместе с испытательными отделами не превышала 10 кв. миль (The Problem…, 1970). Более масштабные опыты с агентными имитаторами в период с 1961 по 1971 г. проводились вблизи побережья Дорсета и Восточного Девона (Восточная Англия) Диспергирование бактерий осуществлялось с самолетов и аэрозольными генераторами с кораблей. Большинство имитаций массированного применения вероятным противником БО против Соединенного Королевства осуществлялось в зоне Лайм Бея или Уэйтмут бея с прохождением бактериального облака через Дорсетское побережье в коридоре между Бритпортом и Портлендским мысом. В ряде экспериментов бактерии рассеивались с корабля в направлении Девонского побережья между городом Торки и границей Дорсета. Имитация биологических атак авиацией происходила в районе аэропорта Тарант Раштон (вблизи Блендсфорд Форума). В качестве наполнителя в бактериальной рецептуре использовались микропити (Spratt В., 1999).

Изучение поражающего действия мелкодисперсных аэрозолей агентов БО. С конца 1940 х гг. эти исследования стали развиваться по двум направлениям:

первое – изучение поражающей способности аэрозолей микроорганизмов; второе – изучение поражающего действия аэрозолей биологических токсинов. Исследования последовательно масштабировались – от изучения принципиальной возможности инфицирования (поражения) людей и экспериментальных животных мелкодисперсными аэрозолями агентов БО в лабораторных условиях, до воспроизведения этого инфицирования (поражения) у экспериментальных животных на полигоне с применением специальных боеприпасов и в условиях, максимально приближенных к действиям «вероятного противника».

В 1950 гг. не существовало ни одного распылительного устройства, дававшего гомогенное облако агентов БО и которое можно было применить в масштабах полигонных испытаний. При инфицировании небольших животных в лабораторных условиях с 1951 г. применяли маломощные распылительные устройства, использующие принцип вибрации. Обычно ими были капилляры, вибрирующие под действием электромагнита. Жидкость подавалась в капилляр под давлением и «срывалась» с его вибрирующего конца в виде струек капелек одного размера. Если скорость потока жидкости и частота вибрации капилляра постоянны, то все образующиеся капли имеют одинаковый размер с небольшим геометрическим стандартным отклонением. При правильном подборе параметров работы устройства оно давало относительно гомогенный аэрозоль с частицами в пределах 5 мкм (Dark, J. М., 1951; Dimmock N. А… 1951). С конца 1950 х гг. для таких экспериментов стали использовать ультразвуковые распылители, обеспечивающие высокую концентрацию аэрозолей с диаметром частиц 5–10 мкм. Но и они имели лишь лабораторное применение. Инфицирование животных агентами БО производили только что образовавшимся аэрозолем (рис. 1.45).

 

Рис. 1.45. Смерть в аэрозоле. На фотографии показана чумная палочка в частичке аэрозоля. Предметное стекло было предварительно окрашено основным фуксином, после чего сотрудники Форт Детрика дали возможность частицам аэрозоля чумы осесть на стекло и исследовали их с помощью фазово контрастного микроскопа. Длина Y. pestis 1–3 мкм. По R. J. Goodlow и F. A. Leonard (1961)

 

Для более масштабных экспериментов было принято допущение, что если при распылении образуются «сопутствующие» мелкие частицы в количестве, достаточном для того, чтобы вызвать легочную инфекцию у экспериментального животного, то количество крупных частиц, задержавшихся в дыхательных путях, не будет иметь существенного значения.

Влияние дисперсности бактериального аэрозоля на развитие биологического поражения.

Прежде всего, военными исследователями было установлено, что с уменьшением размера частиц аэрозоля уменьшается инфицирующая доза возбудителя болезни и меняется патоморфология инфекционного процесса.

Сотрудники Форт Детрика Н. A. Druett et al. (1956) продолжили исследования инфицирующей способности мелкодисперсных бактериальных аэрозолей. Они установили, что доза возбудителя чумы, требуемая для 50 % ной летальности инфицированных животных, повышается в 2,5 раза, если размер частиц увеличивается с 1 до 12 мкм (Druett Н. A. et al., 1956а); а доза Brucella suis (один из возбудителей бруцеллеза) увеличивается в 600 раз (Druett Н. A. et al., 1956b).

Кроме того эти же ученые установили, что болезнь, возникшая при вдыхании аэрозоля спор сибирской язвы с размером частиц приблизительно в 1 мкм (размер споры), является системной с включением в патологический процесс лимфоузлов средостения. Вдыхание же 12 мкм частиц дает локализованную инфекцию с выраженным отеком лица и головы. Вдыхание частиц с Y. pestis, приближающихся по своему размеру к бактерии, ведет к первичной легочной чуме, а 12 мкм частицы дают септицемию с геморрагическим инфарктом в легких. По данным сотрудников Форт Детрика R. J. Goodlow и F. A. Leonard (1961), инфицирование аэрозолем возбудителя туляремии с размерами частиц 1 и 8 мкм вызывало у обезьян поражения, локализовавшиеся в концевых бронхиолах. Однако в серии экспериментов, выполненных с гомогенным аэрозолем F. tularensis, состоящим из частиц диаметром 18 мкм, подопытные обезьяны погибли без признаков поражения легких. Патологические изменения свидетельствовали о распространении поражений, характерных для таких случаев, когда воротами инфекции является носоглотка, откуда инфекция распространяется в регионарные лимфатические узлы, далее следует сепсис, метастазирование инфекции и гибель экспериментального животного.

В классическом эксперименте, проведенном в начале 1960 х гг. в Форт Детрике, данные, полученные на обезьянах и морских свинках, сравнивались с данными в экспериментах на людях. Добровольцами были члены церкви «Адвентисты Седьмого Дня». Шла «холодная война», СССР и Красный Китай были врагами США, а молодые люди из этой церкви не желали носить оружие. Вместо службы в армии им сделали предложение – поучаствовать в экспериментах по экспонированию к аэрозолям микроорганизмов. Первые испытания на людях проводились с аэрозолем Coxiella burnettii, возбудителем Ку лихорадки (см. разд. 3.7). Затем стали использовать F. tularensis (см. разд. 3.3), а позднее – стафилококковый энтеротоксин В (см разд. 3.13).

Эти исследования были очень важны, поскольку вместе с добровольцами к аэрозолям, содержащим микроорганизмы, потенциальные агенты БО, экспонировались также обезьяны макаки резусы и морские свинки. Таким образом, военными исследователями устанавливалось соотношение между человеческими и животными моделями, которые могли затем применяться к другим болезням, при испытании которых нельзя было использовать людей по этическим соображениям.

В табл. 1.4 в первой колонке приведены размеры аэрозольных частиц; во второй – количества клеток возбудителя туляремии, требуемых для гибели 50 % морских свинок, ингаляционная LD50, и в третьей колонке – то же для обезьян. В четвертой колонке даны количества туляремийных клеток, необходимые для инфицирования, но не гибели, человека (ID50).

 

Таблица 1.4. Влияние диаметра частиц на инфекционность аэрозоля возбудителя туляремии [26]

 

Диаметр аэрозольной частицы (мкм) | Морская свинка, LD50 | Обезьяна, LD50| Человек ID50

1 | 2,5 | 14 | 10–52 |

6,5 | 4700 | 178 | 14 162 |

11,5 | 23000 | 672 | – |

18 | 125000 | 3447 | – |

22 | 230000 | >8500 | 

 

При аэрозоле, состоящем из 1 – мкм частиц, требуется всего 2,5 клетки, чтобы убить морскую свинку, 14 – обезьяну и от 10 до 52 клеток, чтобы заразить человека. Если аэрозоль состоит из 6,5 мкм частиц, для инфицирования респираторным путем требуется уже больше клеток, а в случае размера частиц от 18 до 22 мкм количество клеток возбудителя туляремии становится слишком большим, чтобы инфицировать человека. Таким образом, этот эксперимент показал, что аэрозоль биологического поражающего агента обязательно должен быть не только мелкодисперсным, но еще и находиться в очень узком диапазоне дисперсности (Patric W. III., 2001).

Такие эксперименты проводились в начале 1960 х гг. очень интенсивно. К аэрозолям микроорганизмов, агентов БО, экспонировались люди и животные, полученные результаты сопоставлялись. Они позволили военным подсчитать инфекционные дозы агентов БО для человека и, следовательно, определить количество конкретных образцов БО, необходимых для применения по конкретным целям. Но оставалась неуверенность в поражающем действии биологических аэрозолей, связанная с незнанием особенностей патогенеза при попадании патогенного микроба в организм несвойственным ему путем. Например, течение желтой лихорадки можно предсказать довольно успешно в том случае, когда заболевание связано с укусом инфицированного комара, но желтая лихорадка, обусловленная вдыханием возбудителя, может представлять собой совершенно иную болезнь.

Влияние дисперсности аэрозоля биологического токсина на развитие биологического поражения. В природе не происходит контакта человека с аэрозолями очищенных биологических токсинов. В конце 1950 х гг. военные США имели смутные представления о механизмах ингаляционного поражения такими токсинами. И это при том, что в годы Второй мировой войны в США было изготовлено только рицина 1,7 т.

После опытов W. F. Wells et al. (1948), показавших решающее значение для развития инфекции не количества вдыхаемых жизнеспособных бактерий, а величины частиц аэрозоля, прошло почти 10 лет, пока А. Корвин (А. Н. Corwin), сотрудник Университета Дж. Гопкинса (Johns Hopkins University), в опытах с тонкодисперсными порошками рицина показал такую же зависимость между размерами частиц распыленного токсина и тяжестью поражения экспериментального животного. Он обнаружил, что аэрозоль, содержащий частицы токсина с размером, не превышающим 2.1 мкм, в 2,75 раз более токсичен, чем аэрозоль, содержащий частицы токсина с размером 4,2 мкм. Уменьшение размеров частиц аэрозоля, по его мнению, представляет собой самый надежный путь к повышению его поражающей способности (цит. по Lamanna G., 1961). В те же годы был обнаружен еше ряд эффектов, значительно повысивших интерес разработчиков БО к ингаляционному применению биологических токсинов.

1. Оказалось, что верхние дыхательные пути являются проницаемыми для крупномолекулярных токсинов. Так, G. Lamanna (1961) в опытах на мышах, выполненных со столбнячным токсином, обнаружил, что закапывание в нос токсина примерно в 10 тыс. раз более эффективно, чем закапывание в рот. Для ботулинического токсина ими обнаружена та же закономерность, хотя естественным путем его проникновения в организм является алиментарный. Высокая активность этих токсинов при закапывании в нос указывала на их высокую способность к адсорбции из верхних дыхательных путей и носоглоточной области. Однако механизм данного явления G. Lamanna не понял. Нетоксичные крупномолекулярные белки такой способностью не обладали, а в доступной ему литературе он никаких объяснений своим данным не нашел.

2. Сотрудниками Форт Детрика М. A. Cardella и J. V. Jemski показано, что при ингаляционном введении ботулинического токсина резко снижаются различия в чувствительности животных к разным его серотипам, наблюдающиеся при их парентеральном введении (цит. по Lamanna G., 1961).

3. При ингаляционном введении ботулинического токсина значительно увеличивалось количество антитоксина, необходимого для нейтрализации его действия. Например, А. М. Яковлевым (1956) было обнаружено, что при ингаляционном введении ботулинического токсина одна единица антитоксина предохраняет лишь против одной летальной дозы, при подкожном введении – против 20 летальных доз, при пероральном – против 50 летальных доз. Хотя при всех этих способах введения токсина в организм животного гибель животного наступала в результате поражения дыхательного аппарата. Сходные данные получены G. Lamanna (1961) в опытах со столбнячным токсином. Им было установлено, что введение фиксированного количества столбнячного антитоксина мышам увеличивает LD50 столбнячного токсина при внутрибрюшинном введении в 25 раз. Однако при введении того же количества токсина через нос, LD50 увеличивается только в 5 раз.

Результаты этих экспериментов тогда не нашли общепризнанного объяснения, но они открывали заманчивые перспективы перед разработчиками БО. Тем более что уже не оставалось никаких неясностей в отношении судьбы проникших в дыхательные пути частиц биологического аэрозоля.

Судьба проникших в дыхательные пути человека частиц биологического аэрозоля. В основном была установлена в конце 1940 х и вначале 1950 х гг. Исследования механизмов ингаляционного инфицирования агентами БО и разработка самого БО шли параллельными направлениями, оказывая постоянное влияние друг на друга. Они значительно обогатили наши представления об анатомии, физиологии и механике дыхательных путей. Более подробно о функционировании дыхательных путей человека можно прочитать в работах М. Н. Ситникова (1968); L. Reid (1973); В. И. Огаркова и К. Г. Гапочко (1975); P. Е. Morrow (1980).

Судьба проникших в дыхательные пути человека частиц биологического аэрозоля определяется их физико химическими свойствами (дисперсность, гигроскопичность, электрический заряд и др.). Задержка частиц биологического аэрозоля обусловливается силой тяжести, силой инерции и броуновским движением. Эти факторы связаны с массой частиц, т. е. практически с их дисперсностью. В верхних дыхательных путях, где воздух движется с достаточно большой скоростью, основным механизмом осаждения крупных частиц являются инерция и седиментация, влияние которых прямо пропорционально плотности и квадрату диаметра частиц. С уменьшением величины частиц влияние указанных факторов ослабевает и поэтому мелкие частицы в верхних участках легких задерживаются меньше и проникают в более глубокие отделы легких, где основным механизмом их оседания будет броуновское движение.

На степень задержки частиц в дыхательных путях влияют: концентрация вдыхаемого аэрозоля, глубина и частота дыхания, носовой или ротовой тип дыхания, состояние органов дыхания. Глубина проникновения частиц биологического аэрозоля и их первичное распределение в различных отделах дыхательной системы определяется дисперсностью частиц. Только частицы величиной 1–3 мкм и меньше могут достигнуть альвеол (рис. 1.46).

Рис. 1.46. Схематическое строение легочных путей и их отношение к оседанию частиц. По М. Н. Ситникову (1968)

 

Степень задержки частиц определяется их размерами. Частицы размером 10 мкм и более полностью задерживаются в дыхательных путях, в то время как частицы размером 3,2 мкм – всего на 61–80 %, а 0,4 мкм – 17–33 %.

Было установлено, что через слизистую оболочку концевых бронхиол или альвеолярный эпителий микроорганизмы, используемые в качестве агентов БО, проникают в основном благодаря фагоцитозу альвеолярных макрофагов и лейкоцитов. Затем ни вместе с макрофагами и лейкоцитами попадают или непосредственно в кровеносные капилляры легкого и по ним разносятся по всему организму, либо поступают в лимфатические сосуды, оттуда в регионарные лимфатические узлы и далее, при их прорыве, в грудной проток и венозную кровь (Drinker, Hardenber, 1947).

Технические средства применения аэрозолей агентов БО. В наставлениях армии и ВВС США по защите от БО (ТМ 3 216 и AFM 355 6, 1964) перечислены три основных метода образования аэрозолей биологических агентов: с помощью генераторов, распыление и взрыв. Основная проблема при создании устройств, образующих аэрозоли, состояла в необходимости разрешения следующего технического противоречия – распыляемый материал должен иметь дисперсность, позволяющую осуществить ингаляционное инфицирование живой силы противника, но при этом он не должен подвергаться физическим воздействиям, способным вызвать гибель микроорганизмов, либо инактивацию токсинов. В опытах американских военных ученых использовались суспензии бактериальных и вирусных агентов, коллоидные растворы токсинов и сухие рецептуры с определенным размером частиц. В качестве агентного имитатора токсинов применялись препараты альбумина куриного яйца.

Аэрозольные генераторы и ВАПы. В указанных выше американских наставлениях о защите от БО объясняется, что аэрозоль может быть получен в результате пропускания жидкой рецептуры в виде гомогенной суспензии через сопло распылителя при регулируемом давлении. Такие распылительные устройства называются гидравлическими. Размер создаваемых ими частиц определяется величиной давления, размером отверстия, содержанием агента и относительной влажностью атмосферного воздуха.

Хотя конструкции сопел были весьма разнообразными, ни одно из них не давало гомогенного аэрозоля нужной для военных дисперсности. Большинство частиц получались крупными, и аэрозоль быстро оседал, не проникая в глубокие отделы легок предполагаемых жертв биологической войны (Patric W. III., 2001).

Типичным для распыления жидких рецептур такого типа в 1950 гг. было сопло РТ 12. Жидкость распылялась под давлением 1000 фунтов/кв. дюйм, проходя через отверстие с острыми краями, и ударялась в установленный перед отверстием стержень. В результате образовывалась струя в виде конуса, которая в последующем распадалась капельки. В подобном устройстве лабораторного типа удавалось достигать сравнительно высокой скорости подачи жидкости, около 300 мл/мин. В качестве жидкой среды обычно использовали желатин в фосфатном буфере. Примерно 15 % материала. распыленного таким образом, после испарения воды переходило в частицы с диаметром 5 мкм (Zentner F., 1961). Несмотря на высокую производительность, диапазон распыленных частиц был таков, что распылители гидравлического типа мало подходили для целей биологической войны. Они не «показали» себя во времена войны на корейском полуострове и уже к концу 1950 х гг. считались устаревшими.

Другой тип распылителя, исследовавшегося тогда на предмет пригодности для применения агентов БО с помощью авиации, был воздухоструйный. Принцип его действия заключался в том, что жидкость, вытекающая из сопла, деформировалась под действием потока воздуха, имеющего высокую скорость. Диапазон размеров образующихся частиц был не столь велик, как при работе с гидравлическими распылителями. Благодаря импакции на экраны, удавалось удалять крупные частицы из аэрозоля. Однако воздухоструйные распылители малопроизводительны. К тому же более 95 % частиц имеют диаметр, выше того, который необходим даже для лабораторных экспериментов по оценке опасности инфицирующих аэрозолей (Mercer Т. Т. et al., 1968).

В конце 1950 х гг. наиболее перспективными считались распылители, работающие на центробежном принципе. Они уже два десятка лет использовались для распылительной сушки биологических материалов (см. рис. 1.18), и поэтому имелось много их различных модификаций. В таких устройствах жидкость подается на быстро вращающуюся поверхность, установленную под прямым углом к оси вращения. Под действием центробежной силы образуется тонкая пленка жидкости. Поток идет в радиальном направлении, так что образующаяся пленка имеет не одинаковую толщину. Деление пленки на капельки происходит при той толщине, которую эта пленка имеет на краях поверхности. От этой толщины зависит преобладающий размер капелек. Диаметр диска в таких распылителях обычно составляет 5 см, скорость его вращения примерно 70 тыс. об/мин. Вращение осуществляется с помощью электромотора постоянного тока, либо пневматического двигателя или воздушной турбины, поэтому они издают характерный свистящий звук, за который американские исследователи прозвали их «турбинками» Обычно такие распылители используют для генерирования частиц в диапазоне 20–100 мкм, но варьируя скоростью вращения диска и составом распыляемой жидкости, исследователям удавалось получать относительно однородный аэрозоль с дисперсностью в 5 мкм. Центробежные распылители дают монодисперсные аэрозоли с геометрическим стандартным отклонением 1,1. Их недостатками являются ненадежность, низкая производительность и сложность эксплуатации (Marple V. A., Rubow К. L., 1980).

Разрабатывались комбинации воздухоструйных и центробежных распылителей. R. Fraser et al. (1963), используя вращающуюся поверхность диска в комбинации с воздушной струей, направленной по нормали к свободной поверхности жидкости, установили возможность контролируемой дезинтеграции жидкости. Реакционно дисперсный состав образующихся капель зависел от толщины пленки жидкости, чем она тоньше, тем тоньше распыление данного устройства.

Регулирование размеров диспергируемых частиц для сухих рецептур поражающих агентов БО можно осуществлять путем регулирования дисперсности рецептуры, по крайней мере, рассуждая формально логически. В своих показаниях, данных американским следователям, Исии утверждал, что диспергирующие авиационные приборы, снаряженные сухой рецептурой, должны быть потенциально более эффективными при боевом применении, так как в этом случае можно снарядить средство доставки большим количеством материала, можно эффективнее контролировать размер частиц, а в отношении некоторых патогенных микроорганизмов можно избежать губительного воздействия некоторых элементов атмосферных условий. Сам он «довести до ума» такие устройства не успел, ими занялись его новые хозяева (см. FM 3 10; NWIP 36 2; AFM 355 4; FMFM 11 3, 1966). Но оказалось, что и в этом вопросе Исии оказался пустым теоретиком и выдавал желаемое за действительность.

Тонкодисперсный порошок получить очень трудно, еще труднее его сохранить. Такой порошок легко слеживается и образует агломераты частиц значительно большего размера, чем это нужно для инфицирования личного состава вооруженных сил противника. К тому же создание авиационных распыляющих устройств таких порошков упирается вряд сложных технических проблем. В момент распыления воздушным потоком, по мере того как частицы поднимаются вверх из порошка, последний уплотняется воздушным потоком и принимает округлую обтекаемую форму. Для тою чтобы возобновить удаление частиц из слоя порошка, необходимы уже более высокие скорости воздушного потока. Исследования процессов диспергирования тонкодисперсных порошков уже после окончания Второй мировой войны потребовали почти три десятилетия экспериментов и теоретических проработок, некоторые первые обобщения можно прочитать в работе J. М. Hidy (1984).

В самых простых устройствах для распыления тонкодисперсных порошков поток воздуха пропускается через перемешиваемый слой порошка, и частицы уносятся воздушным потоком в аэрозольную камеру. При использовании таких устройств трудно контролировать концентрацию частиц и их распределение по размеру. С более сложными устройствами читатель может ознакомиться в специальной литературе. Их основное отличие от простых устройств заключается в использовании различных подходов к дозированию распыляемого порошка и к его предварительному дроблению перед распылением (см. работы Fontanges R., Founier J, 1971; (Viarple V A., Rubow K. L., 1980; Hidy J. М., 1984). К 1960 м гг. конструирование различных систем для применения сухих рецептур возбудителей опасных инфекционных болезней стало приоритетным направлением военно биологической программы США.

По данным С. Херша (1970), значительная часть важнейших исследовании в области средств применения биологических рецептур авиацией была осуществлена отделом прикладных наук компании «Литтон индастриз инк» (Litton Industries Inc.). В одном из отчетов о разработке этой компанией на протяжении четырех лет ВАПа А/В 454 4 для распыления сухой рецептуры говорится, что «целью проводимых работ было проектирование, изготовление и испытание распылителя – автоматически действующего агрегата, представляющего собой контейнер, предназначенный для наружной подвески на самолетах F 100, F 105 и F 4C. Испытания показали, что этот распылитель, как и проектировалось, по механическим качествам, а также в отношении электропитания и конструктивных решений удовлетворительно увязывается с самолетом носителем; судя по результатам, эффективность распыления рецептуры также удовлетворительна». Упомянутый отчет датирован февралем 1966 г. Примерно в это же время компания «Литтон индастриз инк» работала над проектом «Распыления сухих биологических рецептур при сверхзвуковых скоростях».

В одном из докладов компании Министерству обороны за январь 1967 г. излагались результаты испытания, проведенного на самолете F 4C, имеющем максимальную скорость 2600 км/ч. В отчете, в частности, говорилось, что «были проведены ограниченные летные испытания, в ходе которых летчик испытатель не выявил отрицательных характеристик… Прибор хорошо распылял рецептуру биологического агента над водной поверхностью при скорости самолета 654 км/ч (350 миль/ч) с наполненным баком, а также при скоростях самолета 561, 795 и 935 км/ч (300, 425 и 500 миль/ч), когда содержимое бака было в основном израсходовано». В отчете отмечалось также, что «распылитель был бы полезен в случае, если США примут решение осуществить скрытное внезапное биологическое нападение», не оставляя улик. Прибор «обязательно разрушался при ударе о воду, и на воде не удавалось обнаружить плавающих его частей или обломков». Американские разработчики БО придерживались принципа генерал? Исии – применение БО не должно оставлять материальных «следов» в виде фрагментов боеприпасов (см. керамическую бомбу Исии в разд. 1.9 и «меловую бомбу» в разд. 1.10). Указанная компанией «Литтон индастриз инк» скорость самолета, применяющего сухие рецептуры агентов БО диспергированием из подвесных авиационных приборов, в точности соответствует той, о которой дали показания Комиссии Нидхема пилоты американских самолетов, сбитых в 1952 г. русскими истребителями (см. разд. 1.10 и приложение Б).

В 1960 гг. значительное развитие получили работы, связанные с изучением технических средств применения жидких биологических рецептур. Продолжались исследования по разработке ВАПов для применения жидкой рецептуры агента БО. Среди прочих перед разработчиками ставилась цель уменьшить заражение самолета, с которого распыляется такая рецептура, что, судя по показаниям американских летчиков, данных Комиссии Нидхема, было проблемой во время войны на Корейском полуострове.

Учитывая потери самолетов, применявших БО во время войны на Корейском полуострове, и последующие откровенные показания их пилотов в плену, Министерства обороны США в 1960 м г. дало заказ одному из основных американских предприятий по производству авиационных и космических средств «Аэроджет дженерал аэронтикал дивижн» в Дауни (штат Калифорния) на разработку для армии нового беспилотного самолета, предназначенного для доставки к цели и распыления химических и биологических средств. Первоначально спроектированные для использования в целях разведки поля боя, эти беспилотные самолеты в дальнейшем были приспособлены для снаряжения рецептурой биологического агента в количестве 90 кг и доставки ее на расстояние свыше 180 км. К подобным средствам доставки относится, например, многоцелевой телеуправляемый самолет MQM58A, созданный в конце 1950 х гг. для химической службы армии США. Этот радиоуправляемый аппарат весом 0,5 т имел радиус действия 185 км. Вес его боевой части составлял около 100 кг.

В марте 1967 г. ученые в Форт Детрике завершили программу по разработке головной части тактической ракеты «Сержант» (дальность полета до 160 км), снаряжаемой биологическими средствами. В уставе армии США FM 3 10 «Применение химического и биологического оружия», изданном в марте 1966 г., отмечается, что типичная биологическая ракетная система включает головную часть, которая может быть раскрыта на заранее определенной высоте. При этом из головной части освобождаются биологические бомбочки (bomblets), имеющие на своей поверхности лопасти, которые придают им вращательное движение во время падения. Благодаря такому приспособлению обеспечивается их рассеивание по территории противника (см. «Боеприпасы»), В раннем издании устава FM 3 10, относящемся к февралю 1962 г., не содержится данных о возможности применения биологических средств с помощью ракет.

Боеприпасы. Специалисты армии США продолжали работу над авиационными кассетными бомбами, предназначенными для применения агентов БО, а также совершенствовали субэлементы для таких бомб и головных частей ракет. Создавались боеприпасы для боевого применения жидких и сухих рецептур микроорганизмов и токсинов на больших площадях. Чтобы в самых общих чертах понять их конструктивные особенности, необходимые экспертам, участвующим в расследовании преступлений с применением БО, рассмотрим такие боеприпасы с той обстоятельностью, которую позволяют описания к патентам.



Поделиться:


Последнее изменение этой страницы: 2021-07-19; просмотров: 114; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.131.72 (0.042 с.)