Митоз. Биологическое значение митоза. Патологии митоза. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Митоз. Биологическое значение митоза. Патологии митоза.



Жизненный цикл клетки

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом — ядерных структур, в которых сосредоточено более 90% генетического материала эукариотической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Интерфаза - стадия жизненного цикла клетки между двумя последовательными митотическими делениями; это стадия покоя, которая включает накопление энергии, синтез ДНК и репродукцию центриолей.

 

Интерфаза включает 3 подпериода:

G1 - пресинтетический

S - синтетический

G2 - постсинтетический

 

G1 - самый изменчивый по продолжительности период. В это время в клетке активируются процессы биосинтеза. В первую очередь синтезируются функциональные и структурные белки, в этот период клетка постепенно готовится к дальнейшему делению.

 

S - один из главных периодов митотического цикла. В клетках млекопитающих он составляет 6-10 часов, в это время в клетке продолжаются синтезироваться РНК, белки, идет синтез ДНК, асинхронно происходит редупликация ДНК. К концу периода ядерное ДНК удваивается, каждая хромосома становится двунитчатой, т.е. состоит из 2 хроматид.

Хроматида - структурный элемент хромосомы, который формируется в интерфазе ядра клетки в результате удвоения хромосомы.

 

G2 - относительно короткий период; в клетках млекопитающих он длится 2-5 часов. В это время удваивается кол-во центриолей, митохондрий и пластид. Активно идут митотические процессы, клетка накапливает необходимые белки и энергию для предстоящего деления.

Наступает МИТОЗ

 

Амитоз

 

Амитоз — прямое деление клетки, у которого ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Амитоз характерен для гибнущих клеток и патологически измененных (в клетке раковых опухолей)

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образую два ядра, или имеет место множественное разделение ядра (фрагментация ядра).

В норме амитотическое деление ядер встречается в зародышевых оболочках, в фолликулярных клетках яичника.

 

Мейотический цикл

Мейоз состоит из 2 последующих делений, быстро сменяющих одно другое, происходящий в периоде созревания.

Второе деление следует за первым очень быстро так, что генетический материал не синтезируется в промежутке между этими делениями.

 

Первое мейотическое деление (редукционное)

 

Профаза 1. во время П1 выделяется несколько подпериодов

 

1) лептотена

это наиболее ранняя стадия П1, во время которой начинается спирализация хромосом, в связи с этим хромосомы становятся видимыми как длинные нити.

2) зиготена

стадия, на которой начинается конъюгация гомологичных хромосом. Хромосомы объединяются в биваленты.

3) пахитена

стадия, в которой продолжается спирализация хромосом. Хромосомы укорачиваются, начинается кроссинговер.

4) диплотена

характеризуется возникновением сил отталкивания между гомологичные хромосомами, хромосомы отдаляются друг от друга. В первую очередь это расхождение происходит в центромере, но при этом остаются связанными в точках хиазмы (места, где протекал кроссинговер)

5) диакинез

завершающая стадия П1, когда хромосомы удерживаются только в точках хиазмы. биаленты приобретают самые разнообразные формы.

 

Метафаза 1. Завершается формирование веретена деления; нити веретена деления прикрепляются к центромерам хромосом, которые объединены в биваленты.

От каждой центромеры идет лишь 1 нить к веретену деления.

в результате этого, нити связанные с центромерами направляются к разным полюсам, устанавливают биваленты в плоскости экватора веретена деления.

 

Анафаза 1. связи между гомологичными хромосомами ослабляются, и они расходятся к разным полюсам веретена деления, при этом к каждому полюсу отходят гаплоидный набор хромосом.

 

Телофаза 1. в это время у каждого полюса собирается гаплоидный набор хромосом, содержащий удвоенное количество ДНК.

 

Второе мейотическое деление протекает как митоз

 

Существует несколько типов мейоза:

Зиготный

Зиготный тип мейоза характерен для грибов типа Аскомицеты (Ascomycota) и типа Базидиомикота (Basidiomycota), некоторых водорослей и других организмов[3].

Зиготный тип наблюдается у организмов, в жизненном цикле которых преобладает гаплоидная фаза. Две клетки (гаметы) сливаются с образованием зиготы с диплоидным набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делится, образуя четыре гаплоидные клетки, продолжающие размножение[3].

Споровый

Споровый мейоз встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В этом случае в органах размножения растений, образовавшиеся после мейоза, гаплоидные клетки делятся ещё несколько раз[3].

Гаметный

Гаметный тип мейоза встречается у многоклеточных животных и у некоторых низших растений. Он происходит во время созревания гамет. В случае гаметного мейоза при развитии организма наблюдается выделение клоном гермитативных клеток, которые в дальнейшем дифференцируются в половые клетки. Только клетки этих клонов при созревании будут подвергаться мейозу и превращаться в половые клетки. Все клетки, развивающихся многоклеточных животных организмов, делят на две группы: соматические – из которых образуются клетки всех тканей и органов и герминативные – дающие начало половым клеткам[3].

Жиры

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

  Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях. Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды.

 

Функции липидов:

 1) энергетическая (при распаде 1 г липидов образуется 38,9 кДж энергии);

 2) структурная (фосфолипиды клеточных мембран, образующие липидный слой);

 3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

 4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

 5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

 6) теплоизолирующая (подкожная клетчатка сохраняет тепло).

 

15. Обмен веществ и энергии (фотосинтез, биосинтез белка, энергетический обмен).

 

Обмен веществ (метаболизм) определяется как характерный признак жизни. В результате обмена веществ непрерывно образуются, обновляются и разрушаются клеточные структуры, синтезируются и разрушаются различные химические соединения. В организме динамически уравновешены процессы анаболизма (ассимиляции) – биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) – расщепления сложных молекул компонентов клеток.

Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При этом происходит превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию.

Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белков, липидов, углеводов, витаминов, минеральных солей и воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его существования. Это достигается путем питания. Необходимо также, чтобы организм очищался от конечных продуктов распада, которые образуются при расщеплении различных веществ. Это достигается работой органов выделения.

Все реакции синтеза идут с поглощением энергии. В многообразии реакций обмена, происходящих в клетке, различают пластический и энергетический обмен.

Пластический обмен (анаболизм, или конструктивный обмен) - совокупность всех процессов синтеза сложных органических веществ. Эти вещества идут на построение органалия клетки, на создание новых клеток при делении. Пластический обмен всегда сопровождается поглощением энергии.

Энергетический обмен (катаболизм) - совокупность реакций расщепления (переход веществ, энергетически более богатых, в вещества, бедные энергией). Энергия освобождается в реакциях разложения, когда сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные.

Освободившаяся энергия используется затем в ходе пластического обмена. Для реакций обмена характерна высокая организованность и упорядоченность. Каждая из них осуществляется с помощью специального фермента в определенном органе клетки. Ферменты в большинстве случаев располагаются мономолекулярными слоями на мембранах, выстилая их в том порядке, в котором они работают. Пространственная упорядоченность ферментов обеспечивает необходимую последовательность реакций.

 

Значение фотосинтеза.

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

· кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

· фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

· фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

 

 Биосинтез белка. Трансляция. Регуляция трансляции.

 

Биосинтез белка – сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Именно туда поступает информационная РНК из ядра клетки.

Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции.

 

Транскрипция – это процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК. Информационная РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности. Как и в любой другой биохимической реакции в этом синтезе участвует фермент. Он активирует начало и конец синтеза молекулы и-РНК. Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей. Процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде называется трансляцией.

Аминокислоты доставляются к рибосомам транспортными РНК. Эти РНК имеют форму клеверного листа. На конце молекулы есть площадка для прикрепления аминокислоты, а на вершине – триплет нуклеотидов, комплементарный определенному триплету – кодону на и-РНК. Этот триплет называется антикодоном. Ведь он расшифровывает код и-РНК. В клетке т-РНК всегда столько же, сколько кодонов, шифрующих аминокислоты.

Рибосома движется вдоль и-РНК, смещаясь при подходе новой аминокислоты на три нуклеотида, освобождая их для нового антикодона. Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной аминокислоты оказывается рядом с аминогруппой другой аминокислоты. В результате между ними образуется пептидная связь. Постепенно формируется молекула полипептида.

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трех стоп-кодонов – УАА, УАГ, или УГА.

После этого полипептид покидает рибосому и направляется в цитоплазму. На одной молекуле и-РНК находятся несколько рибосом, образующих полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых полипептидных цепей.

 

Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до 60 тыс. пептидных связей.

 

 

16. Понятие об онтогенезе. Общие закономерности эмбрионального развития. Бластуляция. Гаструляция. Нейруляция.

 

Онтогенез – это индивидуальное развитие организма от момента образования зиготы до смерти. В ходе онтогенеза проявляется закономерная смена фенотипов, характерных для данного вида. Различают непрямой и прямой онтогенезы. Непрямое развитие (метаморфоз) встречается у плоских червей, моллюсков, насекомых, рыб, земноводных. Их зародыши проходят в своем развитии несколько стадий, в том числе личиночную. Прямое развитие проходит в неличиночной или внутриутробной форме. К нему относятся все формы яйцеживорождения, развитие зародышей пресмыкающихся, птиц и яйцекладущих млекопитающих, а также развитие некоторых беспозвоночных (прямокрылых, паукообразных и др.). Внутриутробное развитие происходит у млекопитающих, в том числе и у человека.

В онтогенезе выделяют два периода – эмбриональный – от образования зиготы до выхода из яйцевых оболочек и постэмбриональный – с момента рождения до смерти.

Эмбриональный период многоклеточного организма состоит из следующих стадий:

зиготы;

дробления;

бластулы – стадии развития многоклеточного зародыша после дробления зиготы. Зигота в процессе бластуляции не увеличивается в размерах, увеличивается число клеток, из которых она состоит; стадии образования однослойного зародыша, покрытого бластодермой, и формирования первичной полости тела – бластоцели;

гаструлы – стадии образования зародышевых листков – эктодермы, энтодермы (у двухслойных кишечнополостных и губок) и мезодермы (у трехслойных у остальных многоклеточных животных). У кишечнополостных животных на этой стадии формируются специализированные клетки, такие как стрекательные, половые, кожно-мускульные и т. д. Процесс образования гаструлы называется гаструляцией.

Нейрулы – стадии закладки отдельных органов.

Гисто– и органогенеза – стадии появления специфических функциональных, морфологических и биохимических различий между отдельными клетками и частями развивающегося зародыша. У Позвоночных животных в органогенезе можно выделить:

а) нейрогенез – процесс формирования нервной трубки (головного и спинного мозга) из эктодермального зародышевого листка, а также кожного покрова, органов зрения и слуха;

б) хордогенез – процесс формирования из мезодермы хорды, мышц, почек, скелета, кровеносных сосудов;

в) процесс формирования из энтодермы кишечника и связанных с ним органов – печени, поджелудочной железы, легких.

Последовательное развитие тканей и органов, их дифференцировка происходит благодаря эмбриональной индукции – влиянию одних частей зародыша на развитие других частей. Это связано с деятельностью белков, которые включаются в работу на определенных стадиях развития зародыша. Белки регулируют активность генов, определяющих признаки организма. Таким образом, становится понятным, почему признаки определенного организма появляются постепенно. Все гены никогда не включаются в работу вместе. В конкретное время работает лишь часть генов.

 

Постэмбриональный период разделяется на следующие этапы:

1. Дорепродуктивный – постэмбриональный (рост и развитие до полового созревания);

2. Репродуктивный – период половой зрелости (осуществление репродуктивных функций);

3. Пострепродуктивный – старение и смерть.

 

У человека начальная стадия постэмбрионального периода характеризуется интенсивным ростом органов и частей тела в соответствии с установленными пропорциями. В целом постэмбриональный период человека подразделяется на следующие периоды:

– грудничковый (от рождения до 4 недель);

– грудной (от 4 недель до года);

– дошкольный (ясельный, средний, старший);

– школьный (ранний, подростковый);

– репродуктивный (молодой до 45 лет, зрелый до 65 лет);

– пострепродуктивный (пожилой до 75 лет и старческий – после 75 лет).

 

 

Гаметы

Специализация гамет

Гаметы Функции Особенности строения
Яйцеклетка обеспечение развития зародыша питательными веществами; хранение генетической информации от 0,01 мм до 23 см; крупная и неподвижная; содержит большой запас питательных веществ; крупное ядро с гаплоидным набором хромосом
Сперматозоид внесение генетической информации в яйцеклетку; стимуляция развития яйцеклетки 70 мкм; маленькие и подвижные; есть головка, шейка, хвостик; небольшое ядро с гаплоидным набором хромосом; нет запаса питательных веществ; аппарат Гольджи преобразован в акросому, расположенную на переднем конце головки: акросома выделяет ферменты, растворяющие оболочку яйцеклетки; митохондрия упаковывается вокруг жгутика, образуя шейку

 

 

Рис. 2. Строение яйцеклетки

Определение

Гоноцит, или первичная половая клетка, — эмбриональная клетка, из которой впоследствии могут образоваться сперматозоиды или яйцеклетки.

 

 

 

Мышечная ткань

Виды мышечной ткани:

Гладкая мышечная ткань

Состоит из одноядерных клеток — миоцитов веретеновидной формы.

Свойства: сокращается ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления. Является непроизвольной (то есть ее деятельность не управляется по воле человека).

Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника). У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы. У позвоночных животных гладкая мышечная ткань входит в состав внутренних органовёко (кроме сердца).

 

Соединительная ткань

Выполняет вспомогательная роль во всех органах.

Функция: опорная, защитная, трофическая, терморегуляция.

К соединительной ткани относят костную, хрящевую, жировую, кровь и лимфу. Поэтому соединительная ткань — единственная ткань, которая присутствует в организме в 4-х видах — волокнистом (связки), твёрдом (кости), гелеобразном (хрящи) и жидком (кровь и лимфа).

Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

1 2 3 4 5

1 — рыхлая соединительная ткань, 2 — плотная соединительная ткань, 3 — хрящ, 4 — кость, 5 — кровь.

Состав соединительной ткани:

· межклеточное вещество;

· клетки различного типа (фибробласты, хондробласты, остеобласты, тучные клетки, макрофаги);

· волокнистые структуры.

Нервная ткань

Состоит из нейронов.

Нейрон — нервная клетка, структурно-функциональные единицы нервной системы.

В состав нейрона входят:

дендриты — отростки, воспринимающие раздражения

аксон — отросток, передающий нервные сигналы от тела другим клеткам.

Дендритов у нейрона может быть много, аксон только один.

Функция: осуществляет связь организма с окружающей средой; обеспечивает взаимодействие тканей, органов и систем органов организма.

 

19. Основы общей генетики. 1 и 2 законы Менделя.

 

 

Основы общей генетики

Все признаки живых организмов, которые изучает генетика, условно разделяют на качественные (альтернативные) и количественные. Качественные признаки имеющиеся или отсутствуют, например окраска цветка растения (имеется - красные лепестки, отсутствует - белые лепестки). Количественные признаки характеризуются непрерывной изменчивостью, например рост человека их определяют измерением. Современную генетику начали исследования качественных признаков, ибо закономерности их наследования сравнительно простые и доступные для генетического анализа.

 

Группа заболеваний, которые препятствуют синтезу больших молекул. Они проявляются в виде постоянных симптомов, не связанных с питанием. Сюда входят лизосомные, пероксисомальные (синдром Цельвегера, адренолейкодистрофия, сцепленная с хромосомой Х) заболевания и врожденные нарушения гликозилирования, а также другие врожденные нарушения метаболизма.

Методы генетики человека.

Генеалогический метод

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Популяционный метод

Методы генетики популяций широко применяют в исследованиях человека. Внутрисемейный анализ заболеваемости неотделим от изучения наследственной патологии как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составляет предмет популяционно-генетического исследования. Это дает информацию о степени гетерозиготности и полиморфизма человеческих популяций, выявляет различия частот аллелей между разными популяциями.

Близнецовый метод

Этот метод используют в генетике человека для выяснения степени наследственной обусловленности исследуемых признаков. Близнецы могут быть однояйцевыми (образуются на ранних стадиях дробления зиготы, когда из двух или реже из большего числа бластомеров развиваются полноценные организмы). Однояйцевые близнецы генетически идентичны. Когда созревают и затем оплодотворяются разными сперматозоидами две или реже большее число яйцеклеток, развиваются разнояйцевые близнецы. Разнояйцевые близнецы сходны между собой не более чем братья и сестры, рожденные в разное время. Частота появления близнецов у людей составляет около 1% (1/3 однояйцевых, 2/3 разнояйцевых); подавляющее большинство близнецов является двойнями.

Цитогенетический метод

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.

Биохимический метод

Наследственные заболевания, которые обусловлены генными

мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.).

Генетика пола.

Пол - совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

 Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается от другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

 

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

 

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

 

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием Z-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

 

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

 

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей

Жизненный цикл клетки

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом — ядерных структур, в которых сосредоточено более 90% генетического материала эукариотической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Интерфаза - стадия жизненного цикла клетки между двумя последовательными митотическими делениями; это стадия покоя, которая включает накопление энергии, синтез ДНК и репродукцию центриолей.

 

Интерфаза включает 3 подпериода:

G1 - пресинтетический

S - синтетический

G2 - постсинтетический

 

G1 - самый изменчивый по продолжительности период. В это время в клетке активируются процессы биосинтеза. В первую очередь синтезируются функциональные и структурные белки, в этот период клетка постепенно готовится к дальнейшему делению.

 

S - один из главных периодов митотического цикла. В клетках млекопитающих он составляет 6-10 часов, в это время в клетке продолжаются синтезироваться РНК, белки, идет синтез ДНК, асинхронно происходит редупликация ДНК. К концу периода ядерное ДНК удваивается, каждая хромосома становится двунитчатой, т.е. состоит из 2 хроматид.

Хроматида - структурный элемент хромосомы, который формируется в интерфазе ядра клетки в результате удвоения хромосомы.

 

G2 - относительно короткий период; в клетках млекопитающих он длится 2-5 часов. В это время удваивается кол-во центриолей, митохондрий и пластид. Активно идут митотические процессы, клетка накапливает необходимые белки и энергию для предстоящего деления.

Наступает МИТОЗ

 

Амитоз

 

Амитоз — прямое деление клетки, у которого ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Амитоз характерен для гибнущих клеток и патологически измененных (в клетке раковых опухолей)

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образую два ядра, или имеет место множественное разделение ядра (фрагментация ядра).

В норме амитотическое деление ядер встречается в зародышевых оболочках, в фолликулярных клетках яичника.

 

Митоз. Биологическое значение митоза. Патологии митоза.

Митоз — непрямое деление клетки, наиболее распространенный способ репродукции клеток, обеспечивающий равномерное строгое распределение генетического материала между дочерними клетками и обеспечивающий преемственность хромосом в ряду клеточных поколений.

 

Включает 4 стадии: профаза, метафаза, анафаза, телофаза

 

Профаза. В начале профазы в результате процесса конденсации в клетке начинают выявляться тонкие нити - профазные хромосомы. При этом хромосомы укорачиваются и утолщаются (спирализуются). Исчезают ядрышки, и начинает разрушаться ядерная оболочка. Формируется веретено деления. Завершается профаза окончательным разрушением ядерной оболочки, центриоли клеточного центра, начинает расхождение к полюсам клетки.

 

Метафаза. Завершается формирование веретена деления. Хромосомы выстраиваются в экваториальной плоскости, где собираются у центральной части веретена, образуя метафазную пластинку. К концу метафазы завершатся обособление друг от друга сестринских хроматид.

 

Анафаза. В это время все хромосомы теряют центромерные связки, хроматиды начинают синхронно удаляться друг от друга к противоположным полюсам клетки

 

Телофаза. Заключается в реконструкции дочерних ядер из хромосом, которые собрались у полюсов клетки. Начинается разделение клеточного тела (цитотомия, цитокинез). Окончательно разрушается митотический аппарат. Реконструкция ядер связана с деспирализацией хромосом. Восстановление ядрышка и ядерной оболочки.

 

Цитотомия - осуществляется путем образования клеточной пластинки (у растительных клеток) или путем образования борозды деления (у животных клеток).

 

Продолжительность митоза зависит от размера клеток, их плоидности, числа ядер, и условий окр. среды.

В животных клетках продолжительность митоза 30-60 мин., а в растит. - 2-3 часа.

 

Нарушение митоза: выделяют несколько патологий митоза:

1) повреждение хромосом (набухание, склеивание, повреждение центромер, нарушение спирализации)

2) повреждение митотического аппарата (многополюсный, задержка в метафазе)

3) нарушение цитотомии (преждевременный переход)



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2021-07-19; просмотров: 95; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.184.122 (0.127 с.)