Закон сохранения энергии в механике 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Закон сохранения энергии в механике



 

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения энергии.

С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени, то есть независимости законов физики от момента времени, в который рассматривается система. В этом смысле закон сохранения энергии является универсальным, то есть присущим системам самой разной физической природы. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря, различающимся для разных систем [9].

В различных разделах физики по историческим причинам закон сохранения энергии формулировался независимо, в связи с чем были введены различные виды энергии. Возможен переход энергии из одного вида в другой, но полная энергия системы, равная сумме отдельных видов энергий, сохраняется. Однако, из-за условности деления энергии на различные виды, такое деление не всегда может быть произведено однозначно.

В механике закон сохранения энергии звучит так: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому.

Иными словами, если между телами системы действуют только силы тяготения и силы упругости, то сумма кинетической и потенциальной энергии остается неизменной, то есть механическая энергия сохраняется.

Энергия не создаётся и не уничтожается, а только превращается из одной формы в другую. Учитывая, что в рассматриваемом конкретном случае Еп = mgh и закон сохранения механической энергии можно записать так:

или

Это уравнение позволяет очень просто найти скорость υ2 камня на любой высоте h2 над землёй, если известна начальная скорость камня на исходной высоте h1.

Рассмотрим влияние сил трения на изменение механической энергии системы. Если в изолированной системе силы трения совершают работу при движении тел относительно друг друга, то её механическая энергия не сохраняется. В этом легко убедиться, толкнув книгу, лежащую на столе. Из-за действия силы трения книга почти сразу останавливается. Сообщённая ей механическая энергия исчезает. Сила трения совершает отрицательную работу и уменьшает кинетическую энергию. Но потенциальная энергия при этом не увеличивается.

Поэтому полная механическая энергия убывает. Кинетическая энергия не превращается в потенциальную. Нагревание при действии сил трения легко обнаружить. Для этого, например, достаточно энергично потереть монету о стол. С повышением температуры повышается кинетическая энергия теплового движения молекул или атомов. Следовательно, при действии сил трения кинетическая энергия тела превращается в кинетическую энергию хаотично движущихся молекул.

Силы трения (сопротивления) неконсервативны. Отличие сил трения от консервативных сил становится особенно наглядным, если рассмотреть работу тех и других на замкнутом пути. Работа силы тяжести, например, на замкнутом пути всегда равна нулю. Она положительна при падении тела с высоты h и отрицательна при подъёме на ту же высоту. Работа же силы сопротивления воздуха отрицательна как при подъёме тела вверх, так и при движении его вниз. Поэтому на замкнутом пути она обязательно меньше нуля. В любой системе, состоящей из больших макроскопических тел, действуют силы трения [5].

Следовательно, даже в изолированной системе движущихся тел механическая энергия обязательно убывает. Постепенно затухают колебания маятника, останавливается машина с выключенным двигателем и т. д. Но убывание механической энергии не означает, что эта энергия исчезает бесследно. В действительности происходит переход энергии из механической формы в другие. Обычно при работе сил трения происходит нагревание тел, или, как говорят, увеличение их внутренней энергии. Во всех процессах, происходящих в природе, как и в создаваемых приборах, устройствах, всегда выполняется закон сохранения и превращения энергии: энергия не исчезает и не появляется вновь, она может только перейти из одного вида в другой.

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

В общем случае частицы системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. Систему частиц, на которую не действуют никакие посторонние тела или их воздействие пренебрежимо мало, называют замкнутой или изолированной. Понятие замкнутой системы является естественным обобщением понятия изолированной материальной точки и играет важную роль в физике.

Введем понятие потенциальной энергии системы частиц. Рассмотрим замкнутую систему, между частицами которой действуют только центральные силы, т. е. силы, зависящие при данном характере взаимодействия только от расстояния между ними и направленные по прямой, их соединяющей.

Покажем, что в любой системе отсчета работа всех этих сил при переходе системы частиц из одного положения в другое может быть представлена как убыль некоторой функции, зависящей при данном характере взаимодействия только от конфигурации самой системы или от относительного расположения ее частиц. Эту функцию назовем собственной потенциальной энергией системы, в отличие от внешней потенциальной энергии, характеризующей взаимодействие данной системы с другими телами [5].

Первоначально рассмотрим систему из двух частиц. Вычислим элементарную работу сил, с которыми эти частицы взаимодействуют между собой. Пусть в произвольной системе отсчета в некоторый момент времени положение частиц определяется радиус-векторами и . Если за время dt частицы совершили перемещения и соответственно, то работа сил взаимодействия и равна

 

Теперь учтем, что, согласно третьему закону Ньютона , поэтому предыдущее выражение можно переписать так:

 

Введем вектор , характеризующий положение 1-й частицы относительно 2-й. Тогда и после подстановки в выражение для работы получим

 

.

Сила - центральная, поэтому работа этой силы равна убыли потенциальной энергии взаимодействия данной пары частиц, т. е.

 

Так как функция зависит только от расстояния между частицами, то ясно, что работа не зависит от выбора системы отсчета.

Теперь рассмотрим систему из трех частиц, так как полученный в этом случае результат легко обобщить и на систему из произвольного числа частиц. Элементарная работа, которую совершают все силы взаимодействия при элементарном перемещении всех частиц, может быть представлена как сумма элементарных работ всех трех пар взаимодействий, т. е.

 

Но для каждой пары взаимодействий, как было показано , поэтому

 

где функция есть собственная потенциальная энергия данной системы частиц:

 

Так как каждое слагаемое этой суммы зависит от расстояния между соответствующими частицами, то очевидно, что собственная потенциальная энергия U данной системы зависит от относительного расположения частиц в один и тот же момент времени, или, другими словами, от конфигурации системы.

Собственная потенциальная энергия системы U - величина неаддитивная, т. е. она не равна в общем случае сумме собственных потенциальных энергий ее частей. Необходимо учесть еще потенциальную энергию взаимодействия отдельных частей системы

 

,  

где - собственная потенциальная энергия части системы.

Следует также иметь в виду, что собственная потенциальная энергия системы, как и потенциальная энергия взаимодействия каждой пары частиц, определяется с точностью до прибавления произвольной постоянной, которая, впрочем, и здесь совершенно несущественна.

Уменьшение механической энергии обусловлено тем, что она расходуется на работу против диссипативных сил, действующих в системе. Однако такое объяснение является формальным, поскольку оно не раскрывает физической природы диссипативных сил.

Более глубокое осмысливание этого вопроса привело к фундаментальному выводу о существовании в природе универсального закона сохранения энергии: энергия никогда не создается и не уничтожается, она может только переходить из одной формы в другую или обмениваться между отдельными частями материи.

При этом понятие энергии пришлось расширить введением новых форм ее (помимо механической) - энергия электромагнитного поля, химическая энергия, ядерная и др.

Универсальный закон сохранения энергии охватывает, таким образом, и те физические явления, на которые законы Ньютона не распространяются. Поэтому он не может быть выведен из этих законов, а должен рассматриваться как самостоятельный закон, представляющий собой одно из наиболее широких обобщений опытных фактов.

При уменьшении механической энергии замкнутой системы всегда возникает эквивалентное количество энергии других видов, не связанных с видимым движением. В частности, механическая энергия может сохраняться у незамкнутых систем, но это происходит лишь в тех случаях, когда уменьшение этой энергии за счет работы против внутренних диссипативных сил компенсируется поступлением энергии за счет работы внешних сил.


 

Заключение

 

Энергия – это общая мера различных процессов и видов взаимодействия. Механической энергией называют физическую величину, характеризующую способность тела или системы тел совершить работу. Энергия тела или системы тел определяется максимальной работой, которую они способны совершить в данных условиях. К механической энергии относят два вида энергии – кинетическую и потенциальную.

Законы сохранения энергии образуют тот фундамент, на котором основывается преемственность физических теорий. Действительно, рассматривая эволюцию важнейших физических концепций в области механики, электродинамики, теории теплоты, современных физических теорий, можно убедиться в том, что в этих теориях неизменно присутствуют либо одни и те же классические законы сохранения (энергии, импульса и др.), либо наряду с ними появляются новые законы, образуя тот стержень, вокруг которого и идет истолкование экспериментальных фактов. «Общность законов сохранения в старых и новых теориях является еще одной формой внутренней взаимосвязи последних».

Само понятие энергии было выработано именно в поисках связей между различными формами движения материи. Переход энергии из одной формы в другую означает, что энергия в данной ее форме исчезает, превращается в энергию в иной форме.

Для количественной характеристики различных форм движения вводятся соответствующие им виды энергии: механическая, внутренняя (тепловая), электромагнитная, химическая, ядерная и т. д. Закон сохранения энергии — закон, управляющий всеми явлениями природы, исключений из него науке неизвестно.


 

Список литературы

 

1. Антошина, Л.Г., Павлов, С.В., Скипетрова, Л.А. Общая физика. Сборник задач / Л.Г. Антошина, С.В. Павлов, Л.А. Скипетрова. - М.: Инфра-М, 2008. - 336 с.

2. Блохинцев, Д.И. Основы квантовой механики / Д.И. Блохинцев. - СПб.: Лань, 2004. - 672 с.

3. Бутырский Г.А., Сауров Ю.А. Экспериментальные задачи по физике. – М.: Просвещение, 2001. – 157 с.

4. Вигнер Э. Инвариантость и законы сохранения энергии. – М.: Издательство «Эдиториал», 2002. – 357 с.

5. Гершензон Е.М., Малов Н.Н. Курс общей физики: Механика. – М.: Просвещение, 2007. – 127 с.

6. Дуков, В.М. История формулировки закона сохранения энергии / В.М. Дуков // Физика. - М.: Первое сентября. - 2002. - № 31/02. - С. 32-34.

7. Кубо, Р. Термодинамика / Р. Кубо. - М.: Наука, 2007. - 307 с.

8. Савельев И.В, Курс общей физики, том 1. Механика, колебания и волны, молекулярная физика. – М.: Издательство «Наука», 2007 – 352 с.

9. Сивухин, Д.В. Общий курс физики / Д.В. Сивухин. - М.: Физматлит, 2004. - 656 с.

10. Типлер, П.А., Ллуэллин, Р.А. Современная физика / П.А. Типлер, Р.А. Ллуэллин. - М.: Мир, 2007. - 496 с.

11. Яворский Б.М., Пинский А.А. Основы физики. – М.: Наука, 2002. – 102 с.

 



Поделиться:


Последнее изменение этой страницы: 2021-07-19; просмотров: 270; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.117.109 (0.035 с.)