Видимые движения небесных тел 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Видимые движения небесных тел



Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий. Во II в. до н. э. Гиппарх разделил звезды по блеску на звездные величины, самые яркие он отнес к звездам первой величины (1m), а самые слабые, едва видимые невооруженным глазом, — к 6m. В созвездии звезды обозначаются греческими буквами, некоторые самые яркие звезды имеют собственные названия. Так, Полярная звезда — Малой Медведицы имеет блеск 2m. Самая яркая звезда северного неба Вега — Лиры имеет блеск около Оm.

Особое место среди созвездий занимали 12 зодиакальных созвездий, через которые проходит годичный путь Солнца — эклиптика. Так, в марте Солнце движется по созвездию Рыб, в мае — Тельца, в августе — Льва, в ноябре — Скорпиона.

В настоящее время для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них — экваториальная система координат (рис. 15.1). В ее основе лежит небесный экватор — проекция земного экватора на небесную сферу.

Эклиптика и экватор пересекаются в двух точках: весеннего равноденствия.

Точка весеннего равноденствия находится в созвездии Рыбы, и она служит начальной точкой, от которой в направлении против часовой стрелки отсчитывается координата прямое восхождение, которую обычно обозначают буквой . Эта координата является аналогом долготы в географических координатах. В астрономии принято прямое восхождение измерять в часовой мере, а не в градусной. При этом исходят из того, что полная окружность составляет 24 ч.


Вторая координата светила — склонение,— является аналогом широты, ее измеряют в градусной мере. Так, звезда Альтаир ( Орла) имеет координаты = 19ч48м18с, склонение = + 8°44'. Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты (рис. 15.2), которые используют астрономы при поиске нужных светил.

Взаимное расположение звезд на небе не меняется, они совершают суточное вращение вместе с небесной сферой. Планеты наряду с суточным вращением совершают медленное движение среди звезд, оправдывая свое название (planetas в переводе с греческого — блуждающая звезда).

Видимый путь планет на небе петлеобразен. Размеры описываемых планетами петель различны. На рисунке 15.3 показано видимое петлеобразное движение Марса, которое длится 79 дней.

Наиболее просто видимое движение планет и Солнца описывается в системе отсчета, связанной с Солнцем. Такой подход получил название гелиоцентрической системы мира и был предложен польским астрономом Николаем Коперником (1473—1543).

В этой системе суточное движение небесного свода объясняется вращением Земли вокруг оси, годичное движение Солнца по эклиптике — движением Земли вокруг Солнца, а описываемые планетами петли — сложением движений Земли и планет (см. рис. 15.3). Вокруг Земли движется только Луна. Коперник рассчитал расстояния планет до Солнца.

В астрономии среднее расстояние от Земли до Солнца принято за единицу расстояния и называется астрономической единицей (а. е.), 1 а. е. = 150 • 106 км. Так, Меркурий находится от Земли на расстоянии 0,39 а. е., а Сатурн — на расстоянии 9,54 а. е.

В античные времена и вплоть до Коперника полагали, что в центре Вселенной расположена Земля и все небесные тела обращаются по сложным траекториям вокруг нее. Эта система мира называется геоцентричекой системой мира.

Доказательство движения Земли вокруг Солнца и определение расстояний до звезд. Если Земля обращается вокруг Солнца, то близкие звезды должны периодически смещаться на фоне более далеких звезд. Это смещение называется параллактическим, а угол 71, под которым со звезды виден радиус земной орбиты, называется параллаксом. Как видно из рисунка 15.4, расстояние до звезды



Так как параллакс звезд мал, мы заменили синус малого угла самим углом, выраженным в радианной мере, а затем перепзли от радианной меры к градусной, учтя, что 1 рад = 206 265". В астрономии принято измерять расстояние до звезд в парсеках (пк).

1 пк = 206 265 • ао = 206 265 • 150 • 106 км = 3 • 1013 км.

Итак, если параллакс измерять в угловых секундах, а расстояние до звезды — в парсеках, то связью между ними будет равенство

Только во второй половине XIX в. удалось измерить параллаксы и расстояния до звезд и тем самым подтвердить теорию Коперника наблюдениями. Так, ближайшая к нам звезда Центавра имеет параллакс = 0,751", поэтому расстояние до нее r = 1,33 пк 4 • 1013 км.

Для определения положения звезд используются небесные экваториальные координаты. Сложное петлеобразное движение планет объясняется движением Земли и планет вокруг Солнца, а наблюдение годичного параллакса у звезд не только подтверждает обращение Земли вокруг Солнца, но и позволяет определять расстояния до иих.

56 вопрос

ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ

В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл три закона их движения. На основании этих законов И. Ньютон вывел формулу для закона всемирного тяготения. В дальнейшем, используя законы механики, И. Ньютон решил задачу двух тел — вывел законы, по которым одно тело движется в поле тяготения другого тела. Он получил три обобщенных закона Кеплера.

Первый закон Кеплера. Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений — кругу, эллипсу, параболе или гиперболе (рис. 15.5).

Планеты движутся вокруг Солнца по эллиптической орбите (рис. 15.6). Ближайшая к Солнцу точка орбиты называется перигелием, самая далекая — афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. Эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а — среднее расстояние планеты до Солнца.

По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 < е < 1, у параболы е = 1, у гиперболы е > 1 (см. рис. 15.5).

Движение естественных и искусственных спутников вокруг планет, движение одной звезды вокруг другой в двойной системе также подчиняются этому первому обобщенному закону Кеплера.

Второй закон Кеплера. Каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает равные площади.

Планета проходит путь от точки А до А' и от В до В' (рис. 15.7) за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего —когда находится на наибольшем удалении (в афелии).

Таким образом, второй закон Кеплера определяет скорость движения планеты. Она тем больше, чем планета ближе к Солнцу. Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.



Третий закон Кеплера. Куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс тел, есть величина постоянная.

Если Т — период обращения одного тела вокруг другого тела на среднем расстоянии а, то третий обобщенный закон Кеплера записывается как

a3/[T2 (M1 + М2)] = G/4 2, (15.2)

где M1 и М2 — массы притягивающихся двух тел, а G — гравитационная постоянная. Для Солнечной системы масса Солнца массы любой планеты, и тогда

аЗ/Т2 = GM /4 2. (15.3)

Правая часть уравнения — постоянная для всех тел Солнечной системы, что и утверждает третий закон Кеплера, полученный ученым из наблюдений.

Третий обобщенный закон Кеплера позволяет определять массы планет по движению их спутников, а массы двойных звезд — по элементам их орбит.

Движение планет и других небесных тел вокруг Солнца под действием силы тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них.

СИСТЕМА ЗЕМЛЯ — ЛУНА

Видимое движение Луны. Луна — ближайшее к Земле небесное тело и ее естественный спутник. Луна делает один оборот вокруг Земли за 27,3 сут. и с таким же периодом вращается вокруг своей оси, поэтому с Земли видно только одно ее полушарие. Обратную сторону Луны впервые удалось увидеть только 7 октября 1959 г., когда советская автоматическая станция «Луна-3» облетела Луну и сфотографировала ее обратную сторону, передав снимки на Землю.

Видимое перемещение Луны происходит неравномерно, потому что Луна движется в пространстве по эллиптической орбите, в одном из фокусов которой находится центр Земли. Большая полуось лунной орбиты а = 384 400 км = , эксцентриситет е - 0,055.

Луна, подобно Земле, представляет собой темный непрозрачный шар, светящий отраженным солнечным светом. Солнце всегда освещает примерно половину этого шара, другая половина остается темной. Но так как к Земле обыкновенно бывают обращены и часть светлого видимого полушария, и часть неосвещенного, то Луна большую часть времени кажется нам неполной. Различают четыре основные фазы Луны: новолуние, первая четверть, полнолуние и последняя четверть.

На рисунке 15.8 показаны положения Луны относительно Земли и Солнца для различных фаз.

Интервал времени между двумя последовательными новолуниями, равный 29,5 сут., получил название синодический месяц (период). Синодический месяц лежит в основе лунного календаря.

Солнечные и лунные затмения. Периодически Луна частично или полностью заслоняет Солнце — такое явление называется солнечным затмением, оно может произойти во время новолуний. Когда Луна попадает в тень Земли, наступает лунное затмение, которое может наступить во время полнолуний. Вследствие наклона лунной орбиты к эклиптике эти явления происходят не каждый месяц, а значительно реже. На протяжении календарного года происходят от 2 до 5 солнечных затмений и от 0 до 3 лунных затмений.

Еще древние вавилоняне заметили, что все затмения повторяются в том же порядке примерно через 18 лет и 11 дней. Этот период у древних вавилонян назывался циклом Сароса (в переводе с египетского сарос — повторение), им пользовались для предсказаний затмений.



Приливные явления. Под действием лунного притяжения водная оболочка Земли принимает слегка вытянутую в сторону Луны (и противоположную сторону) форму. Там, где Луна выше всего над горизонтом и где ниже всего под горизонтом, будет прилив. На восходе и заходе Рис. 15.9 Луны будут наблюдаться отливы (рис. 15.9). Действительно, ближайшая к Луне точка А будет испытывать большее притяжение к Луне, чем центр Земли Е и точка С (эти силы отмечены синим цветом). Разница сил между точками А и Е называется приливной силой (отмечена черной стрелкой), и она направлена от центра Земли к Луне. В точке В приливная сила направлена в противоположную сторону от Луны, а в точках С и D приливная сила направлена к центру Земли. Таким образом, вода под действием приливной силы будет оттекать из С и D (отлив) и собираться в А и В (прилив).

Во время приливов уровень воды плавно нарастает, достигая наибольшего значения, а затем постепенно снижается до низшего уровня. Вследствие вращения Земли приливные выступы образуются в каждый следующий момент уже в новых точках земной поверхности. Максимумы подъемов воды чередуются через определенные промежутки времени, близкие к 12 ч 26 мин. Таким образом, в каждом месте океанского берега за 24 ч 52 мин бывают два прилива и два отлива. Максимальные приливы бывают, когда Луна находится выше всего над горизонтом и ниже всего под горизонтом. Из-за движения Луны вокруг Земли Луна проходит выше всего над горизонтом как раз через 24 ч 52 мин. Это указывает на взаимосвязь между Луной и приливами. Действительно, явление приливов вызывается притяжением Луны.

Солнце, как и Луна, также вызывает приливы. Несмотря на большую удаленность от Земли, но благодаря большой массе Солнца приливы, которые оно вызывает всего в 2,5 раза меньше лунных.

Во время полнолуний и новолуний лунные и солнечные приливы складываются и наблюдаются самые большие приливы. Напротив, когда Луна в первой или последней четверти, во время лунного прилива будет солнечный отлив; действие Солнца вычитается из действия Луны, и приливы бывают существенно меньшими.

Луна движется вокруг Земли по эллиптической орбите. Смена лунных фаз определяется изменением вида освещенной стороны Луны. Движением Луны вокруг Земли объясняются лунные и солнечные затмения. Явление приливов и отливов обусловлено притяжением Луны и большими размерами Земли.

57 вопрос

ФИЗИЧЕСКАЯ ПРИРОДА ПЛАНЕТ И МАЛЫХ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ

По современным данным, вокруг Солнца обращаются восемь крупных шарообразных тел, называемых планетами (рис. 15.10). Наряду с планетами и их спутниками вокруг Солнца обращаются планеты-карлики, тысячи малых планет, называемых астероидами, а также кометы и частички пыли. Масса Солнца в 740 раз превышает массу всех планет, благодаря этому оно своим сильным гравитационным полем удерживает планеты и около себя. Поверхность Солнца нагрета до температуры около 6000 К, поэтому оно излучает собственный свет, а планеты освещаются Солнцем и светят отраженным светом.

Планеты вращаются вокруг Солнца в том же направлении, что и Солнце вокруг своей оси, и удалены от Солнца в следующем порядке: Меркурий, Венера, Иемля, Марс, Юпитер, Сатурн, Уран, Нептун (по современным данным Плутон относят к планетам-карликам). Но физическим характеристикам их объединяют в две группы разграниченные в пространстве поясом астероидов.

Планеты земной группы. Планеты, движутся внутри пояса астероидов (Меркурий, Венера, Земля и Марс), принадлежат к земной группе, так как имеют много общего. Все эти планеты, небольшие по размерам и массе (самая крупная из них — Земля), имеют твердую поверхность, сравнительно высокую среднюю плотность, близкую к плотности Земли (5,5 г/см3), и обладают атмосферами (кроме Меркурия). Планеты земной группы состоят из тяжелых химических элементов.

Наличие атмосферы, содержащей наряду с другими газами углекислый газ, привело к тому, что на поверхности Венеры и Земли действует парниковый эффект. Углекислый газ, а у Земли и водяные пары, пропускают солнечный свет, который нагревает поверхность и атмосферу. Нагретая поверхность испускает инфракрасные лучи, но эти лучи углекислый газ не пропускает наружу в космическое пространство и поверхность не охлаждается. Тепло скапливается у поверхности. Так, температура поверхности Венеры составляет почти 500 °С. А если бы атмосфера Земли не содержала углекислый газ, то температура на ее поверхности была бы на 40° ниже существующей. Так что без парниково го эффекта Земля была бы покрыта льдом.

Планеты-гиганты. Планеты, движущиеся за кольцом астероидов, образуют группу планет-гигантов, возглавляемую Юпитером — самой крупной и массивной планетой Солнечной системы. К этой группе относятся также Сатурн, Уран и Нептун. Они обладают значительными размерами, малой средней плотностью (большая плотность у Нептуна — 1,66 г/см3, самая малая у Сатурна — 0,7 г/см3), быстрым вращением, протяженными гелиево-водородными атмосферами с небольшим содержанием аммиака и метана и, по-видимому, не имеют твердой поверхности. Планеты-гиганты состоят из легких химических элементов, в основном водорода и гелия. Планеты-гиганты окружены кольца ми, состоящими из мелких твердых частиц. Вокруг планет-гигантов обращаются десятки спутников.

Только у Меркурия и Венеры отсутс-твуют сиутники. Крупные спутники (такие, как Луна у Землт или Титан у Сатурна) имеют шарообразную форму, а мелкие (как Фобос и Деймос у Марса) — неправильную форму, свойственную большинству астероидов.

Астероиды. В начале XIX в. между орбитами Марса и Юпитера были обнаружены звездообразные тела — астероиды, которые двигались вокруг Солнца на расстояниях 2,3—3,3 а. е. Астероиды — небольшие бесформенные тела, самый крупный из них — Церера — имеет в поперечнике около 950 км. Сейчас известно несколько тысяч астероидов, некоторые из них имеют орбиты, пересекающие орбиту Земли. Общая масса всех астероидов небольшая, существенно меньше массы любой планеты.

Кометы. Эти небесные светила получили свое название от греческого слова кометас — хвостатая, или косматая, звезда. Яркие кометы появляются сравнительно редко, в среднем одна комета за 10—15 лет. Слабые же по блеску кометы появляются часто (на фотографиях звездного неба ежегодно обнаруживают несколько комет).

Большинство комет входят в состав нашей Солнечной системы. Под действием притяжения Солнца они, как и планеты, обращаются вокруг него по вытянутым эллиптическим орбитам (рис. 15.11). Самой известной кометой является комета Галлея (рис. VIII цветной вклейки), названная так в честь первого исследователя комет, который предсказал появление этой кометы. Она движется по очень вытянутой эллиптической орбите (а = 18 а. е. и е = 0,967). В перигелии она сближается с Солнцем до расстояния 0,59 а. е. (заходит внутрь орбиты Венеры), а в афелии удаляется до 35,3 а. е. за орбиту Нептуна. Последний раз комета появилась в 1986 г. В момент ее прохождения вблизи Солнца для ее изучения был осуществлен полет четырех космических аппаратов, два из которых — «Вега-1» и «Вега-2».

Фотографирование ядра кометы Галлея советскими космическими станциями с расстояния около 8000 км показало, что оно имеет неправильную форму с размерами 16x18x8 км (рис. VII цветной вклейки). В следующий раз ее можно будет увидеть в 2062 году.

На больших расстояниях от Солнца кометы предстанляют собой глыбы твердого вещества из льда, застышпих газов и пыли, вмороженных частиц метеорного веществаа. При приближении к Солнцу лед начинает таять и испаряться, вокруг ядра кометы, начальные размеры которого не превышают десятков километров, образуется протяженная оболочка — кома. Под действием давления солнечного света и солнечного ветра часть газов комы отталкивается в сторону, противоположную Солнцу, образуя хвост кометы. Массы комет оцениваются в 1015—1018 кг.

В конце концов комета теряет вещество и распадается на части.

Метеоры и метеориты. Метеоры (от греческого слова метеорос — парящий в воздухе) — это вспыхивающие в земной атмосфере мельчайшие твердые частицы, которые вторгаются в нее извне с огромной скоростью. Метеоры часто называют падающими звездами. В межпланетном пространстве хаотично движется с различными скоростями множество таких частиц. Массы подавляющего их большинства измеряются десятыми и тысячными долями грамма, в редких случаях — несколькими граммами. Если в атмосферу влетает частица со скоростью свыше 30 км/с, то из-за трения о воздух она быстро раскаляется, вспыхивает и порождает метеор. Чем больше масса и скорость частицы, тем ярче метеорная вспышка. В среднем по всему небу за 1 ч появляются 5—6 ярких метеоров.

Помимо отдельных метеорных частиц вокруг (Солнца движутся целые их рои, называемые метеорными потоками. Они порождены распадающимися или уже распавшимися кометами. Каждый метеорный рой обращается вокруг Солнца с постоянным периодом, равным периоду обращения породившей его кометы, и многие из них в определенные дни года встречаются с Землей. В эти дни каличество метеоров значительно возрастает, а ecли метиорный рой комнактный, то наблюдаются метеорные или звездные дожди, когда в одной ограниченной области неба за одну минуту вспыхивают сотни метеоров.

Многие метиорные потоки связаны с кометами. Так, метеорный поток, исходящий из созвездия Орионана (Ориониды), связан с кометой Галлея, а метеорный поток Андромениды — с распавшейся кометой Биэлы.

Помимо пыли, в межпланетном пространстве движется множество твердых тел размерами от сантиметров до десятков метров. При падении на Землю они получают название метеоритов.

По химическому составу метеориты подразделяют на три группы: каменные, железокаменные и железные. Самый крупный железный метеорит — Гоба — найден на территории Намибии: он имеет размеры 3x3x1 м, а массу — 60 т.

На месте падения крупных метеоритов образуются метеоритные кратеры значительных размеров. Такие кратеры обнаружены в Аризоне (США), Канаде, на Таймыре (Россия) и в других местах. У Аризонского метеоритного кратера диаметр 1207 м, глубина 174 м, а высота окружающего его вала составляет от 40 до 50 м.

На других планетах и их спутниках также обнаружены кратеры метеоритного происхождения. Крупные метеориты могут образовать кратеры диаметром в несколько десятков километров.

Вокруг Солнца обращаются две группы больших планет: планеты земной группы, похожие на Землю, и планеты-гиганты, похожие на Юпитер. Между орбитами Марса и Юпитера расположен пояс астероидов. Кометы движутся вокруг Солнца по очень вытянутым орбитам, при движении вблизи Солнца у кометы образуется хвост.

58 вопрос

СОЛНЦЕ

Основные характеристики Солнца. Солнце — лишь одна из бесчисленного множества звезд, существующих в природе. Благодаря близости Земли к Солнцу мы имеем возможность изучать происходящие на нем процессы и по ним судить об аналогичных процессах в звездах, непосредственно не видимых из-за колоссального их удаления.

Шарообразное Солнце представляется нам светящимся диском. Видимая поверхность Солнца называется фотосферой, ее радиус считается радиусом Солнца. На среднем расстоянии от Солнца до Земли (а0 = 1 а. е.), угол, под которым виден радиус фотосферы = 16', поэтому линейный радиус Солнца R = а0 • sin = 1,5 • 108 км • 0,00465 = 700 000 км, что в 109 раз превышает радиус Земли.

Масса Солнца определяется по движению Земли вокруг Солнца и третьему обобщенному закону Кеплера, согласно которому (если пренебречь массой планеты по сравнению с массой Солнца М )

В этой формуле а = а0, G = 6,67 • 10-11 м3/кг • c2 — гравитационная постоянная, Т = T0 = 365,25 сут. — период обращения Земли вокруг Солнца. Так как 1 сут. 1440 мин = 86 400 с, то Т0 = 365,25 • 86 400 = 3,2 • 107 с.

Ускорение свободного падения на поверхности Солнца в 28 раз больше, чем на поверхности Земли, и равно 274 м/с2.

На фотографических снимках Солнца часто нидмы темные пятна, возникающие в его фотосфере. Если и течение нескольких дней следить за пятнами, то можно заметить их перемещение, что указывает на вращение солица вокруг оси. Такие наблюдения показали, что солнце вращается не как твердое тело. Период его обращения вокруг оси вблизи экватора составляет 25 сут., а вблизи полюса — 30 сут. Линейная скорость вращения Солнца на экваторе составляет 2 км/с.

Измерение освещенности, которую создает Солнце на Земле, показало, что на земную поверхность площадью в 1 м2, расположенную перпендикулярно к солнечным лучам, ежесекундно поступает от Солнца энергия, равная 1370 Дж. Эта величина получила название солнечной постоянной E = 1,37 кВт/м2. По ней нетрудно рассчитать светимость Солнца L , или мощность солнечного излучения — энергию, излучаемую Солнцем за 1 с со всей его поверхности. Для этого достаточно умножить солнечную постоянную на площадь поверхности сферы, в центре которой находится Солнце, радиус которой равен расстоянию от Земли до Солнца а0 = 1,5 • 1011 м. Так как площадь поверхности сферы радиусом а0 равна S = 4 R2, где = 3,14, то светимость Солнца



На долю Земли приходится всего лишь одна двухсотмиллиардная доля энергии, излучаемой Солнцем, но и ее достаточно для расцвета и многообразия жизни на нашей планете.

Судить о температуре Солнца (и звезд) мы можем только по его (их) излучению. Солнце является источником излучения различных длин волн — от длинноволнового радио- до коротковолнового рентгеновского и гамма-излучения. На рисунке XIII цветной вклейки показан наблюдаемый спектр Солнца в видимом диапазоне длин волн, полученный с помощью спектрографа. На нем мы видим, что на фоне непрерывного спектра (цветная радуга) видны линии поглощения различных химических элементов.

По наличию спектральных линий астрономы определяют химический состав Солнца. Оказалось, что Солнце почти на 71% состоит из водорода, 27% составляет гелий, на остальные химические элементы приходится около 2% массы.

Астрономы предполагают, что излучение Солнца близко по своим характеристикам к излучению абсолютно черного тела, законы излучения которого хорошо известны.

Согласно закону Вина длина волны, на которую приходится максимум излучения нагретого тела max, связана с температурой Т формулой

Желтый цвет Солнца указывает на то, что максимум его излучения приходится на длину волны max = 4,8 • 10-7м, следовательно, температура Солнца должна быть

Другой метод оценки температуры основан на законе Стефана — Больцмана, который гласит: мощность излучения с квадратного метра поверхности абсолютно черного тела i пропорциональна четвертой степени его абсолютной температуры Т, т. е.

Отсюда следует, что температура солнечной фотосферы

Подставляя в эту формулу указанные выше значения, получим, что T = 5800 К, что мало отличается от результата, полученного по закону Вина. Обычно среднюю температуру солнечной фотосферы считают близкой к 6000 К.

Строение солнечной атмосферы. Все виды излучений, которые мы воспринимаем от Солнца, образуются в его самых верхних слоях, в атмосфере. Самый глубокий и плотный слой атмосферы — фотосфера — имеет толщину около 200 км, плотность вещества в ней составляет 10-5кг/м3, что значительно меньше плотности земной атмосферы. Несмотря на малое значение толщины и плотности, фотосфера непрозрачна для всех видов излучений, образующихся в более глубоких слоях Солнца, поэтому мы не можем заглянуть в его подфотосферные слои.


В фотосфере видна зернистая структура, получившая название грануляции (рис. VI на цветной вклейке). Характерные угловые размеры гранул, напоминающих по виду рисовые зерна, составляют 1—2', но линейные их размеры достигают тысяч и более километров. Наблюдения показывают, что грануляция находится в непрерывном движении и изменении. Гранулы живут от 5 до 10 мин, а потом на их месте появляются новые. В центре более яркой и горячей части гранулы происходит подъем из-под фотосферы более горячего вещества и опускание под фотосферу более темного и холодного вещества, окаймляющего гранулу. Скорость подъема и опускания газа составляет около 1 км/с, а разница между температурой горячего и холодного вещества близка к 300 К. Таким образом, грануляция на Солнце указывает на то, что энергия в фотосферу поступает из более глубоких и горячих слоев Солнца путем конвекции.

На ярком фоне фотосферы наблюдаются темные пятна. Па рисунке VI цветной вклейки показан участок фотосферы с пятном. Размеры солнечных пятен могут превышать 10 000 км! Такие крупные пятна хорошо видны даже невооруженным глазом (конечно, только сквозь темный светофильтр).

На фоне ослепительно яркой фотосферы пятно кажется нам черным. Однако измерения показали, что яркость пятен в 5—10 раз меньше яркости окружающей фотосферы, а их реальный цвет — красноватый. По этим измерениям оказалось, что температура пятен около 4000 К.

Наблюдения показали наличие сильного магнитного поля в пятнах. В некоторых пятнах магнитная индукция достигает 0,5 Тл, в то время как в среднем в фотосфере она составляет 10-4—10-5 Тл.

На рисунке IX цветной вклейки показана фотография Солнца, полученная во время полного солнечного затмения. На снимке хорошо видна внешняя часть солнечной атмосферы — корона, имеющ;ая вид лучистого жемчужного сияния, яркость которого в миллион раз меньше яркости фотосферы. Солнечная корона прослеживается до расстояний в десять и более радиусов Солнца.

Солнечная корона нагрета до температуры около 2 • 106 К. При такой температуре вещество короны представляет собой полностью ионизованную плазму, излучающую в рентгеновском диапазоне. И действительно, при наблюдениях в рентгеновские телескопы, которые установлены на космических астрономических обсерваториях за пределами земной атмосферы, солнечная корона представляется в полной красе, в то время как поверхность Солнца (фотосфера) практически не видна.

Во время полных солнечных затмений на краю Солнца, во внутренних слоях солнечной короны, наблюдаются протуберанцы — струи горячего вещества, имеющие вид выступов и фонтанов. Некоторые из них — спокойные протуберанцы — в течение многих часов висят над солнечной поверхностью, другие — эруптивные (взрывные) — внезапно с огромной скоростью взлетают над поверхностью, быстро поднимаются до высоты в десятки и даже сотни тысяч километров и так же быстро падают вниз.

Из короны в межпланетное пространство истекает непрерывный поток частиц (протонов, ядер гелия, ионов, электронов), называемый солнечным ветром. Частицы солнечного ветра покидают солнечную корону со скоростью около 800 км/с, поэтому солнечное притяжение не может их удержать. Вблизи Земли скорость солнечного ветра достигает 500 км/с.

Солнечная активность. Количество солнечных пятен ме няется с периодом около 11 лет. На рисунке 16.1 показано наблюдаемое изменение числа пятен на Солнце с начала XVII в. Когда наблюдается максимальное число пятен, то говорят о максимуме солнечной активности. В годы максимума солнечной активности значительно возрастает число мощных протуберанцев, в такт с солнечной активностью меняется и форма солнечной короны. Одним из самых значительных проявлений солнечной активности являются солнечные вспышки, во время которых выделяется колоссальная энергия — в течение десятка минут выделяется энергия до 1025Дж. Наблюдения со спутников установили, что во время солнечных вспышек происходит резкое увеличение ультрафполетового излучения, появляется мощное рентгеновское и гамма-излучение. Датчики быстрых заряженных частиц, установленные на искусственных спутниках, показали, что при мощных солнечных вспышках в межпланетное пространство выбрасываются с огромными скоростями, иногда доходящими до 100 000 км/с, мириады частиц, обладающих большой кинетической энергией и получивших название солнечных космических лучей. Их основной состав ядра атомов водорода, гелия, а также электроны.

Вспышки и другие проявления солнечной активности оказывают значительное влияние на физические условия в земной атмосфере и околоземном космическом пространстве и, как следствие, на биологические явления.

Астрономы не только взвесили Солнце, но и измерили температуру его поверхности и светимость. Наземные и космические исследования позволили изучить солнечную атмосферу и обнаружить проявления солнечной активности.

59 вопрос

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЗВЕЗД

Диаграмма «спектр — светимость». Как и Солнце, звезды освещают Землю, но из-за огромного расстояния до них освещенность, которую они создают на Земле, на много порядков меньше солнечной. По этой причине и возникают технические проблемы при измерениях освещенности от звезд. Астрономы строят гигантские телескопы, чтобы уловить слабые излучения звезд. Чем больше диаметр объектива телескопа, тем более слабые звезды можно с их помощью исследовать. Измерения показали, что, например. Полярная звезда создает освещенность на поверхности Земли Е = 3,8 • 10-9 Вт/м2, что в 370 млрд раз меньше освещенности, создаваемой Солнцем. Расстояние до Полярной звезды составляет 200 пк, или около 650 св. лет (r = 6 • 1018 м). Поэтому светимость Полярной звезды LП = 4 r2E = 4 • 3,14 х (6 • 1018 м)2 - 3,8 • 10-9 Вт/м2 = 9,1 • 1029 Вт = 4600 L . Как видим, несмотря на малую видимую яркость этой звезды, ее светимость в 4600 раз превышает солнечную.

Измерения показали, что среди звезд встречаются звезды в сотни тысяч раз более мощные, чем Солнце, и звезды со светимостями в десятки тысяч раз меньшими, чем у Солнца.

Измерения температур поверхности звезд показали, что температура поверхности звезды определяет ее видимый цвет и наличие спектральных линий поглощения тех или иных химических элементов в ее спектре. Так, Сириус сияет белым цветом и его температура равна почти 10 000 К. Звезда Бетельгейзе ( Ориона) имеет красный цвет и температуру поверхности около 3000 К. Солнце желтого цвета имеет температуру 6000 К. По температуре, по цвету и виду спектра все звезды разбили на спектральные классы, которые обозначаются буквами О, В, А, F, G, К, М. Спектральная классификация звезд приведена ниже в таблице.

Имеется еще одна интересная связь между спектральным классом звезды и ее светимостью, которая представляется в виде диаграммы (рис. 16.2) «спектр — светимость (в светимостях Солнца)» (ее еще называют диаграммой Герцшпрунга—Рессела в честь двух астрономов — Э. Герцшпрунга и Г. Рессела, построивших ее). На диаграмме четко выделяются четыре группы звезд.

Главная последовательность. На нее ложатся параметры большинства звезд. К звездам главной последовательности относится и наше Солнце. Плотности звезд главной последовательности сравнимы с солнечной плотностью.

Красные гиганты. К этой группе в основном относятся звезды красного цвета с радиусами, в десятки раз превышающими солнечный, например звезда Арктур ( Волопаса), радиус которой превышает солнечный в 25 раз, а светимость — в 140 раз.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 743; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.117.109 (0.078 с.)