Магнитные свойства атома. Спин электрона. Орбитальные и спиновые характеристики электрона в атоме. Опыт Штерна – Герлаха 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Магнитные свойства атома. Спин электрона. Орбитальные и спиновые характеристики электрона в атоме. Опыт Штерна – Герлаха



В соответствии с классической электродинамикой, движущийся по замкнутой траектории электрон, будучи подобен току, возбуждает в окружающем пространстве магнитное поле, и имеет магнитный момент, величина которого определяется по формуле , где s– площадь, охватываемая орбитой электрона;n– единичный нормальный к s вектор;

I – сила тока, причем ток направлен противоположно направлению скорости электрона;

Так как то Pm может принимать значения:

где магнетон Бора. .

Это значение магнитного момента, которое имел бы атом водорода, если бы электрон был классической частицей и вращался по первой боровской орбите. Таким образом, магнитный момент, как физическая величина квантуется подобно механическому моменту и может принимать лишь значения кратные магнетону Бора.

Спин - собственный момент импульса (или магнитный момент) элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого.

Отношение величины магнитного момента к величине спина называется гиромагнитным отношением, и, в отличие от орбитального углового момента, оно не равно магнетону (μ0): Введённый здесь множитель g называется g-фактором частицы;

Спин электрона равен 1/2.

Орбитальное квантовое число l определяет значение орбитального момента количества движения электрона на данной орбитали. Допустимые значения: 0, 1, 2, 3,...n-1.

 

Орбитальное квантовое число определяет форму поверхности максимальной вероятности нахождения электрона и ее симметрию.

Спиновое квантовое число ms. Каждый электрон также характеризуется собственным механическим моментом движения, который получил название speen. Спиновое квантовое число ms имеет только два значения +1/2 и -1/2, которые связаны с его направлением.

Наличие у атомов магнитных свойств и явление пространственного квантования (квантование проекции момента импульса) были обнаружены в опытах Штерна и Герлаха (1921-1923 гг.) еще до появления квантовой механики.Как известно, на магнитный момент в неоднородном магнитном поле действует сила, определяемая соотношением:

F= μz дН/дZ

которая отклоняет его от первоначального направления движения. Если проекция магнитного момента атома могла бы изменяться непрерывно, то на пластинке П наблюдалась бы размытая широкая полоса. Однако в Ш.— Г. о. было обнаружено расщепление пучка атомов на 2 компоненты, симметрично смещенные относительно первичного направления распространения на величину Δ — на пластинке появлялись две узкие полосы. Это указывало на то, что проекция магнитного момента атома μz на направление поля Н принимает только два отличающиеся знаком значения ±μo, т. е. μo ориентируется вдоль Н и в противоположном направлении. Величина магнитного момента атома μо, измеренная в опыте по смещению Δ, оказалась равной Бора магнетону.

22. Полный набор квантовых чисел электронов в атоме, их физический смысл

Состояние электрона в атоме определяется набором четырех квантовых чисел, каждое из которых может принимать определенные значения:

· Главное квантовое число: n = 1,2,3,… Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

· Орбитальное квантовое число: l = 0,1,2,…,(n-1). характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - подуровнем.

· Магнитное квантовое число: m = 0,±1,±2,…,±l. характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве

· Спиновое квантовое число: ms = ±1/2 характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.

Физический смысл полного набора квантовых чисел электронов в атоме – порядковый номер электронного уровня, определение состояния электрона в атоме, описание электронных оболочек атомов. Каждый электрон в атоме имеет свой собственный «адрес», записанный набором четырех квантовых чисел.

23. 1 s -Состояние электрона в атоме водорода является сферически-симметричным, т. е. не зависит от углов q и j. Волновая функция y электрона в этом состоянии определяется только расстоянием r электрона от ядра, т. е. y = y 100(r), где цифры в индексе соответ­ственно указывают, что п= 1, l = 0 и ml =0. Уравнению Шредингера для 1 s -состояния электрона в атоме водорода удовлетворяет функция вида

(224.1)

где, как можно показать, величина, совпадающая с первым боровским радиусом а (см. (212.2)) для атома водорода, С — некоторая постоянная, опреде­ляемая из условия нормировки вероятностей

 

Спектр излучений атома водорода:

Существуют линейчатый, сплошной и полосатый спектры. У Водорода – линейный спектр, поскольку водород – одноатомный газ. Линейчатый спектр имеют газы одноатомные и пары металлов.

 

 - установленное Бальмером условие для частоты длин волн спектра. R – постоянная Бальмера = 3,2931 * 10 15 с-1

 

Спектральные серии водорода — набор спектральных серий, составляющих спектр атома водорода. Поскольку водород — наиболее простой атом, его спектральные серии наиболее хорошо изучены. Они хорошо подчиняются формуле Ридберга:

где R = 109 677 см−1 — постоянная Ридберга для водорода, n′ — основной уровень серии

 

24. Различные состояния электрона в атоме принято обозначать малыми буквами латинского алфавита в зависимости от значения орбитального квантового числа l

 

Квантовое число l    1        2        3        4        5        6

Символ состояния   s         p        d        f         g        h

Значение главного квантового числа n указывают перед символом состояния с данным числом l. Например, электрон, имеющий n = 3 и l =2 обозначают символом 3d. Последовательность имеет следующий вид:

 

1s (для п =1) 2s, 2p (для п = 2) 3s, 3p, 3d (для п = 3) и т.д.

Энергетический уровень квантовой системы называется вырожденным, если содержит более одного состояния. Говоря математически, соответствующее значение энергии является кратным собственным значением гамильтониана.

Количество независимых таких состояний (то есть кратность собственного значения) называется кратностью вырождения.

Принцип Паули:

В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами).

 

25. Магнитный момент атома слагается из орбитальных и собственных моментов входящих в его состав электронов, а также из магнитного момента ядра (который обусловлен магнитными моментами входящих в состав ядра элементарных частиц – протонов и нейтронов).

При внесении атома в магнитное поле с индукцией на электрон, движущийся по орбите, эквивалентной замкнутому контуру с током, действует момент сил :

  , (6.2.1)  

При этом изменяется орбитальный момент импульса электрона:

  , (6.2.2)  

Аналогично изменяется вектор орбитального магнитного момента электрона:

  , (6.2.3)  

Из этого следует, что векторы и , и сама орбита прецессирует вокруг направления вектора . На рисунке 6.2 показано прецессионное движение электрона и его орбитального магнитного момента, а также дополнительное (прецессионное) движение электрона.

 

  Эффект Зэмана:

- расщепление линий атомных и молекулярных спектров под действием магнитного поля. Этот эффект сыграл важную роль в развитии атомной теории. Он показал, что испускание света атомом связано с движением его электронов, а позднее дал возможность детально и с высокой точностью проверить правильность квантовой механики – основы современной атомной теории. 

 

26. Рентгеновское излучение — это электромагнитное излучение с широким диапазоном длин волн (от 8·10-6 до 10-12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты рентгеновского излучения имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов.

Рентгеновское излучение обычно получают при бомбардировке быстрыми электронами поверхности какого-либо вещества в твёрдом состоянии. Исследования этого излучения с помощью рентгеновских спектральных приборов показали, что его спектр в общем случае содержит две составляющие – Сплошную и Линейчатую, причем узкие интенсивные линии накладываются на сплошной спектр. Сплошная составляющая получила название Тормозного рентгеновского излучения, а линейчатая – Характеристического. Если энергия электронов, которые внедряются в вещество, меньше некоторой определенной величины, то возникает только тормозное излучение.

Закон Мозли — закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером.

Согласно Закону Мозли, корень квадратный из частоты ν спектральной линии характеристического излучения элемента есть линейная функция его порядкового номера

где  R — постоянная Ридберга, Sn — постоянная экранирования, n — главное квантовое число. На диаграмме Мозли зависимость от Z представляет собой ряд прямых (К-, L-, М- и т. д. серии, соответствующие значениям n = 1, 2, 3,…).

27. Молекула - это наименьшая частица вещества, определяющая его свойства и способная к самостоятельному существованию. Молекулы построены из атомов.

 

Электронному, колебательному и вращательному движениям молекул соответствуют три типа уровней энергии:

We, Wкол и Wвр,

и три типа молекулярных спектров. Согласно квантовой механике энергии всех видов движений молекулы могут принимать только определенные значения (кроме энергии поступательного движения). Энергия молекулы W, изменение которой определяет молекулярный спектр, может быть представлена в виде суммы квантовых значений энергий:

W =We+Wкол +Wвр

причем по порядку величины:

We: Wкол: Wвр = 1:

Следовательно, We >> Wкол >> Wвр.

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич. состояния в другое. M. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб. характерными получаются M. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением: такой спектр состоит из узких линий с доп-леровской шириной.                                                                                                                               

28. Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Физика твёрдого тела

29. Твёрдое тело — это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия.

Пусть имеется N изолированных атомов. Пока атомы не взаимодействуют, они имеют одинаковые энергетические уровни. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах. По мере сближения атомов между ними возникают все усиливающееся взаимодействие, приводящие к тому, что энергетические уровни смещаются, расщепляются и расширяются в зоны, образуется так называемый зонный энергетический спектр. Вместо одного одинакового для всех N атомов уровня возникает N очень близких, но не совпадающих уровней, т.е. каждый уровень изолированного атома расщепляется в пределе на N густо расположенных уровней, образующих полосу или зону.

 

Зона проводимости — в зонной теории твёрдого тела первая из незаполненных электронами зон (диапазонов энергии, где могут находиться электроны) в полупроводниках и диэлектриках. Электроны из валентной зоны, преодолев запрещённую зону, при ненулевой температуре попадают в зону проводимости и начинают участвовать в проводимости, то есть перемещаться под действием электрического поля.

Валентная зона — энергетическая область разрешённых электронных состояний в твёрдом теле, заполненная валентными электронами.

Запрещённая зона — зона — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Этот диапазон называют шириной запрещённой зоны и обычно численно выражают в электрон-вольтах.

 

У металлов валентная зона заполнена частично или перекрывается с зоной проводимости. При приложении электрического поля к кристаллу валентные электроны получают дополнительную энергию и переходят на более высокие энергетические уровни, что с точки зрения зонной теории рассматривается как протекание электрического тока.

У диэлектриков валентная зона заполнена электронами полностью, а запрещенная зона достаточно велика (порядка 3 - 5 эВ). Для получения заметной электропроводности кристалл необходимо нагреть до высоких температур.

 

У полупроводников валентная зона заполнена полностью, а ширина запрещенной зоны соизмерима с тепловой энергией электронов (не более 2,5-3,0 эВ;). При абсолютном нуле (Т=0) зона проводимости свободна и электропроводность полупроводников равна нулю. С ростом температуры часть валентных электронов может получить тепловую энергию, достаточную для переброса их в зону проводимости и тогда, при приложении внешнего электрического поля, эти носители заряда смогут принять участие в электропроводности.

 

 В диэлектриках запрещенная зона очень широкая и электронам просто не хватает энергии, чтобы ее преодолеть.

 

30. Модель свободных электронов в металлах предполагает, что при образовании кристаллической решетки от атомов отщепляются некоторые слабее всего связанные с ними (валентные) электроны. Отщепленные электроны становятся общими для всех атомов и могут свободно перемещаться в кристалле. Именно эти электроны, в отличие от электронов, заполняющих внутренние электронные оболочки атомов, обеспечивают электропроводность металлов. Поэтому их называют электронами проводимости.

 

При 0 К энергия всех электронов меньше энергии Ферми. Ни один из электронов покинуть кристалл не может и никакой термоэлектронной эмиссии не наблюдается. С увеличением температуры возрастает число термически возбужденных электронов, способных выйти из металла, что обусловливает явление термоэлектронной эмиссии.

 

Уровень Ферми - уровень энергии, ниже которого все состояния при T = 0K заняты электронами.

 

31. Распределение электронов и дырок по энергиям в твердом теле описывается статистикой Ферми-Дирака. Согласно этой статистике вероятность того, что состояние с некоторой энергией E при температуре Т будет занято электроном,
определяется функцией Ферми-Дирака: (fo)

(1)

Вероятность нахождения на этом уровне дырки будет соответственно:

k - постоянная Больцмана

Т - абсолютная температура

F-энергия Ферми, т.е. работа, которую необходимо затратить для изменения числа частиц в системе на единицу.

 

Энергия Ферми - максимальная энергия электронов при температуре в 0 К. Энергия Ферми растет с увеличением количества электронов в квантовой системе и, соответственно, уменьшается с уменьшением количества электронов (фермионов). Это обусловливается возникающим интенсивным обменным и электростатическим взаимодействием в области перекрытия зарядовых плотностей волновых функций электронов при росте количества электронов.

 

– энергия Ферми

 

Вырожденный газ — газ, на свойства которого существенно влияют квантово-механические эффекты, возникающие вследствие тождественности его частиц. В собственных полупроводниках электронный или дырочный газ в, соответственно, зоне проводимости или валентной зоне, невырожденный.

 

Условия вырождения выполняются при достаточно низкой температуре T(для идеального газаv≈√T) и высокой концентрации частиц.

 

kT << EF, где EF – энергия Ферми

 

– температура Ферми

 

32. Плотность состояний — величина определяющая количество энергетических уровней в интервале энергий на единицу площади.Термин может применяться к фотонам, электронам, квазичастицам в твёрдом теле и т. п.

 

В каждой энергетической зоне могут располагаться в соответствии принципом Паули не более 2(2l + 1) электронов - по два с противоположными спинами на каждом уровне. Число электронов в кристалле конечно и зависит как от числа атомов N, так и от количества электронов в атоме. Электроны стремятся занять энергетические уровни с наинизшей энергией.

 

В физике, энергия Ферми (EF) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур.

 

Уровень Ферми - уровень энергии, ниже которого все состояния при T = 0K заняты электронами.

Плотность состояний p (W), то есть число разрешенных состояний

электронов в единичном интервале энергии равна

 

Заполнение электронами каждого из этих состояний определяется функцией распределения Ферми–Дирака

 

При Т=0 состояния с W < WF полностью заполнены, так как f(W WF – пусты. Очевидно, что при Т = 0 площадь под кривой в пределах от 0 до WF(0) дает полную концентрацию электронов

 

При конечной температуре T ¹ 0, поскольку ступенька распределения f(W) Ферми-Дирака размывается, то число электронов dn, обладающих энергиями в бесконечно узком интервале значений от W до (W + dW) будет равно произведению плотности состояний (числу состояний в этом интервале энергий) на вероятность их заполнения:

 

При этом функция:

описывает плотность заполнения энергетических уровней при температуре Т

 

33. Квантовая статистика – это статистический метод исследования, применимый к системам, состоящим из большого числа частиц, которые подчиняются законам квантовой механики. Квантовая статистика – это дважды статическая система.

 

Соотношение, которое позволяет, зная концентрацию электронов, найти энергию Ферми, или, наоборот:

 

Среднее значение энергии электронов: <E>=  /  = (3/5)EF.

 

34. С точки зрения зонной теории все твердые тела можно подразделить на две основные группы: материалы, у которых валентная зона перекрывается зоной проводимости, и материалы, у которых валентная зона и зона проводимости разделены запрещенной зоной.

 В первом случае незначительное внешнее энергетическое воздействие переводит электроны на более высокие энергетические уровни, что обусловливает хорошую электропроводность материалов.

Во втором случае переходы на более высокие энергетические уровни связаны с необходимостью внешнего энергетического воздействия, превышающего ширину запрещенной зоны.

Материалы, в энергетической диаграмме которых отсутствует запрещенная зона, относятся к категории проводников, материалы с узкой запрещенной зоной (менее 3 эВ) — к категории полупроводников и материалы с широкой запрещенной зоной (более 3 эВ) — к категории диэлектриков.

 

35. Чистые полупроводники называются собственными.

При температурах, T→0, полупроводник с правильной кристаллической решеткой не имеет свободных электронов в зоне проводимости и является хорошим изолятором.

При повышении температуры электроны получают тепловую энергию, которая даже при комнатных температурах может оказаться достаточной для перехода с верхних уровней валентной зоны в зону проводимости. В этом случае в валентной зоне освобождается свободное место, которое называется дыркой.

При наложении внешнего электрического поля на место дырки в валентной зоне может перейти электрон соседнего атома, т.е. дырка будет перемещаться в направлении, противоположном направлению электронов. Следовательно дырку можно рассматривать как фиктивный положительный заряд.

Таким образом, носителями заряда в чистых полупроводниках являются электроны в зоне проводимости и дырки в валентной зоне.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 291; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.10.246 (0.072 с.)