История развития естествознания 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

История развития естествознания



1. Период механического и метафизического Естествознание, начавшийся с возникновения Естествознание как систематической экспериментальной науки в эпоху Возрождения, (со 2-й половины 15 в. до конца 18 в.). Естествознание этого периода революционно по своим тенденциям. Здесь выделяется Естествознание начала 17 в. (формирование механического Естествознание - Г. Галилей) и конца 17 в. - начала 18 в. (завершение этого процесса - И. Ньютон).

2. Период открытия всеобщей связи и утверждения эволюционных идей – стихийно-диалектический. На первый план выдвигаются физика и химия, изучающие взаимопревращения форм энергии и видов вещества. В геологии возникает теория медленного развития Земли (Ч. Лайель), в биологии зарождается эволюционная теория (Ж. Ламарк), палеонтология (Ж. Кювье), эмбриология (К. М. Бэр). Возникла необходимость сочетать анализ с синтезом в целях теоретического охвата накопленного опытного материала. Три великих открытия (2-я треть 19 в.) - клеточная теория, учение о превращении энергии и дарвинизм.

Затем последовали открытия, раскрывавшие диалектику природы полнее: создание теории химического строения органических соединений (А. М. Бутлеров,1861), периодической системы элементов (Д. И. Менделеев, 1869), химической термодинамики (Я. Х. Вант-Гофф, Дж. Гиббс), основ научной физиологии (И. М. Сеченов, 1863), электромагнитной теории света (Дж. К. Максвелл, 1873).

3. Период «новейшей революции» в Естествознание - 20 в. форсируется развитие прежде всего физики (атомная энергия, радиолокация, радиоэлектроника, средства связи, автоматика и кибернетика, квантовая электроника - лазеры, электронная оптика и т. д.). Физика играет роль стимулятора и трамплина по отношению к другим отраслям Естествознания. Физические методы определили успехи химии, геологии, астрономии, (открытия электромагнитных волн Г. Герцем, коротковолнового электромагнитного излучения К. Рентгеном, радиоактивности А. Беккерелем, электрона Дж. Томсоном, светового давления П. Н. Лебедевым, введение идеи кванта М. Планком, создание теории относительности А. Эйнштейном, радиоактивного распада Э. Резерфордом и Ф. Содди, изобретение радио А. С. Поповым), а также в химии, биологии (возникновение генетики на базе законов Г. Менделя). В 1913-1921 на основе представлений об атомном ядре, электронах и квантах Н. Бор создаёт модель атома, разработка которой ведётся соответственно периодической системе элементов Д. И. Менделеева.

4. Четвертый этап связан с овладение атомной энергией в результате открытия деления ядра (1939) и последующих исследований (1940-45), с которыми связано зарождение электронно-вычислительных машин и кибернетики. Полное развитие он получил в середине 20 в.

Таким образом, в понятие естествознания входит целых комплекс наук, взятых в их взаимной связи, как целое.

Естествознание - одна из трёх основных областей научного знания о природе, обществе и мышлении; теоретическая основа промышленной и с.-х. техники и медицины; естественно-научный фундамент философского материализма и диалектического понимания природы.

 

БИОЛОГИЯ

Химические элементы в организме человека

 

Весь наш мир: растения, животный мир, все, что нас окружает, состоит из одних и тех же микроэлементов, которые присутствуют в разных концентрациях во всем и, конечно же, в нашей пище.

Каждый элемент влияет на наше здоровье. Содержание элементов в продуктах питания величина очень изменчивая. Более стабильной и постоянной величиной является содержание элементов в организме здорового человека, хотя и оно может иметь вариабельность (изменчивость).

Для организма человека определенно установлена роль около 30 химических элементов, без которых он не может нормально существовать. Эти элементы называют жизненно необходимыми. Кроме них, имеются элементы, которые в малых количествах не сказываются на функционировании организма, но при определенном содержании являются ядами.

Макроэлементы - содержание в организме более одного грамма: фосфор, калий, сера, натрий, хлор, магний, железо, фтор, цинк, кремний, цирконий - 11 элементов.

Микроэлементы - содержание в организме более одного миллиграмма: рубидий, стронций, бром, свинец, ниобий, медь, алюминий, кадмий, барий, бор (первая десятка микроэлементов), теллур, ванадий, мышьяк, олово, селен, титан, ртуть, марганец, йод, никель, золото, молибден, сурьма, хром, иттрий, кобальт, цезий, германий - 28 элементов. Каждый элемент влияет на наше здоровье. Содержание элементов в продуктах питания величина очень изменчивая. Более стабильной и постоянной величиной является содержание элементов в организме здорового человека, хотя и оно может иметь вариабельность (изменчивость).

Предположения некоторых ученых идут дальше. Они считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определенную биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. Однако, по мере того, как развиваются исследования в данном направлении, выявляется биологическая роль все большего числа химических элементов.

Организм человека состоит на 60% из воды, 34% приходится на органические вещества и 6% - на неорганические. Основными компонентами органических веществ являются углерод, водород, кислород, в их состав входят также азот, фосфор и сера. В неорганических веществах организма человека обязательно присутствуют 22 химических элемента: Ca, P, O, Na, Mg, S, B, Cl, K, V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cr, Si, I, F, Se.

Например, если вес человека составляет 70 кг, то в нем содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5, цинка - 3.

Ученые договорились, что если массовая доля элемента в организме превышает 10-2%, то его следует считать макроэлементом. Доля микроэлементов в организме составляет 10-3-10-5%.

 

 

Имеется большое число химических элементов, особенно среди тяжелых, являющихся ядами для живых организмов, - они оказывают неблагоприятное биологическое воздействие. К этим элементам можно отнести: Ba, Ni, Pd, Pt, Au, Ag, Hg, Cd, Tl, Pb, As, Sb, Se.

Встречаются элементы, которые в относительно больших количествах являются ядами, а в низких концентрациях оказывают полезное влияние. Например, мышьяк - сильный яд, нарушающий сердечно-сосудистую систему и поражающий почки и печень, в небольших дозах полезен, и врачи прописывают его для улучшения аппетита. Кислород, необходимый человеку для дыхания, в высокой концентрации (особенно под давлением) оказывает ядовитое действие. Среди примесных элементов имеются и такие, которые в малых дозах обладают эффективными лечащими свойствами. Так, давно было замечено бактерицидное (вызывающее гибель различных бактерий) свойство серебра и его солей. Например, в медицине раствор коллоидного серебра (колларгол) применяют для промывания гнойных ран, мочевого пузыря, при хронических циститах и уретритах, а также в виде глазных капель при гнойных конъюктивитах и бленнорее. Карандаши из нитрата серебра применяют для прижигания бородавок, грануляций. В разбавленных растворах (0,1-0,25%) нитрат серебра используют как вяжущее и противомикробное средство для примочек, а также в качестве глазных капель. Ученые считают, что прижигающее действие нитрата серебра связано с его взаимодействием с белками тканей, что приводит к образованию белковых солей серебра - альбуминатов. Серебро пока не относят к жизненно необходимым элементам, однако уже экспериментально установлено его повышенное содержание в мозгу человека, в железах внутренней секреции, печени. В организм серебро поступает с растительной пищей, например с огурцами и капустой.

Весьма интересен вопрос о принципах отбора природой химических элементов для функционирования живых организмов. Не вызывает сомнения, что их распространенность не является решающим фактором. Здоровый организм сам способен регулировать содержание отдельных элементов. При наличии выбора (пищи и воды) животные инстинктивно могут вносить лепту в это регулирование. Возможности растений в данном процессе ограничены.

 

Органические вещества клетки. Основные жизненно необходимые соединения – белки, жиры и углеводы. Биополимеры.

 

Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры, белки, углеводы, липиды, гормоны, нуклеиновые кислоты, витамины.

Биологические полимеры – органические соединения, входящие в состав клеток живых организмов. Полимер – многозвенная цепь простых веществ – мономеров (n ÷ 10тыч. – 100тыс. мономеров.

 

 

Свойства биополимеров зависят от строения их молекул, от числа и разнообразия мономерных звеньев. Если мономеры разные, то повторяющиеся чередования их в цепи создают регулярный полимер.

Пример

…А – А – В – А – А – В… регулярный

…А – А – В – В – А – В – А… нерегулярный

 

Углеводы

Общая формула Сn(H2O)m

 

Углеводы в организме человека играют роль энергетических веществ. Самые важные из них – сахароза, глюкоза, фруктоза, а также крахмал. Они быстро усваиваются ("сгорают") в организме. Исключение составляет клетчатка (целлюлоза), которой особенно много в растительной пище. Она практически не усваивается организмом, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Углеводов много в картофеле и овощах, крупах, макаронных изделиях, фруктах и хлебе.

Пример: глюкоза, рибоза, фруктоза, дезоксирибоза – моносахариды. Сахароза – дисахариды. Крахмал, гликоген, целлюлоза - полисахариды

Нахождение в природе: в растениях, фруктах, в цветочной пыльце, овощах (чеснок, свекла), картофеле, рисе, кукурузе, зерне пшеницы, древесине…

Их функции:

1) энергетическая: при окислении до СО2 и Н2О высвобождается энергия; избыток энергии запасается в клетках печени и мышц в виде гликогена;

2) строительная: в растительной клетке – прочная основа клеточных стенок (целлюлоза);

3) структурная: входят в состав межклеточного вещества кожи сухожилий хрящей;

4) узнавание клетками др.: в составе клеточных мембран, если разделённые клетки печени смешать с клетками почек, то они самостоятельно разойдутся на две группы благодаря взаимодействию однотипных клеток.

Липиды (липоиды, жиры)

 

К липидам относятся разнообразные жиры, жироподобные вещества, фосфорлипиды… Все они нерастворимы в воде, но растворимы в хлороформе, эфире…

Нахождение в природе: в клетках животных и человека в клеточной мембране; между клетками – подкожный слой жира.

Функции:

1) теплоизоляционная (у китов, ластоногих …);

2) запасное питательное вещество;

3) энергетическая: при гидролизе жиров выделяется энергия;

4) структурная: некоторые липиды служат составной частью клеточных мембран.

Жиры тоже служат для человеческого организма источником энергии. Их организм откладывает "про запас" и они служат энергетическим источником долговременного пользования. Кроме того, жиры обладают низкой теплопроводностью и предохраняют организм от переохлаждения. Неудивительно, что в традиционном рационе северных народов так много животных жиров. Для людей, занятых тяжелым физическим трудом, затраченную энергию тоже проще всего (хотя и не всегда полезней) компенсировать жирной пищей. Жиры входят в состав клеточных стенок, внутриклеточных образований, в состав нервной ткани. Еще одна функция жиров – поставлять в ткани организма жирорастворимые витамины и другие биологически активные вещества.

Белки

 

Рисунок - Молекула белка

 

Белки – биополимеры, мономерами которых являются аминокислоты.

 

Образование линейных молекул белков происходит в результате реакций аминокислот др. с др.

Источниками белков могут служить не только животные продукты (мясо, рыба, яйца, творог), но и растительные, например, плоды бобовых (фасоль, горох, соя, арахис, которые содержат до 22–23% белков по массе), орехи и грибы. Однако больше всего белка в сыре (до 25 %), мясных продуктах (в свинине 8–15 %, баранине 16–17 %, говядине 16–20 %), в птице (21 %), рыбе (13–21 %), яйцах (13 %), твороге(14 %). Молоко содержит 3 % белков, а хлеб 7–8 %. Среди круп чемпион по белкам – гречневая крупа (13 % белков в сухой крупе), поэтому именно ее рекомендуют для диетического питания. Чтобы избежать "излишеств" и в то же время обеспечить нормальную жизнедеятельность организма, надо, прежде всего, дать человеку с пищей полноценный по ассортименту набор белков. Если белков в питании недостает, взрослый человек ощущает упадок сил, у него снижается работоспособность, его организм хуже сопротивляется инфекции и простуде. Что касается детей, то они при неполноценном белковом питании сильно отстают в развитии: дети растут, а белки – основной "строительный материал" природы. Каждая клетка живого организма содержит белки. Мышцы, кожа, волосы, ногти человека состоят главным образом из белков. Более того, белки – основа жизни, они участвуют в обмене веществ и обеспечивают размножение живых организмов.

 

Строение:

первичная структура – линейная, с чередованием аминокислот;

 

вторичная – в виде спирали со слабыми связями между витками (водородными);

 

третичная – спираль свёрнутая в клубок;

 

четвертичная – при объединении нескольких цепей, различных по первичной структуре.

 

Функции:

 

1) строительная: белки являются обязательным компонентом всех клеточных структур;

2) структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом;

3) ферментативная: катализатором хим. реакций выступает любой фермент – белок, но очень специфичный;

4) транспортная: перенос О2, гормонов в теле животных и человека;

5) регуляторная: белки могут выполнять регуляторную функцию, если они являются гормонами. Например инсулин (гормон, поддерживающий работу поджелудочной железы) активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет;

6) защитная: при попадании инородных тел в организме вырабатываются защитные белки – антитела, которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом;

7) энергетическая: при недостатке углевода и жиров могут окислиться молекулы аминокислот.

 

Основные признаки живых организмов. Клеточная теория

 

Биология – наука о происхождении и развитии живого, его строении, формах организации и способах активности. В настоящее время насчитывается более 50 наук внутри комплекса биологического знания, среди них: ботаника, зоология, анатомия, морфология, биофизика, биохимия, экология и т.д. Такое многообразие научных дисциплин объясняется сложностью объекта исследования – живой материи.

С этой точки зрения особенно важно понять, какие критерии лежат в основе разделения материи - на живую и неживую.

В классической биологии соперничали две противоположные позиции, объяснявшие сущность живого принципиально различным образом, - редукционизм и витализм.

Сторонники редукционизма считали, что все процессы жизнедеятельности организмов можно свести к совокупности определенных химических реакций. Термин «редукционизм» происходит от латинского слова redaction – отодвигать назад, возвращать. Идеи биологического редукционизма опирались на представления вульгарного механистического материализма, получившего наибольшее распространение в философии 17 – 18 вв. Механистический материализм все процессы, происходящие в природе, объяснял с точки зрении законов классической механики. Адаптация механистической материалистической позиции к биологическому познанию привела к формированию биологического редукционизма. С точки зрения современного естествознания, редукционистическое объяснение не может быть признано удовлетворительным, поскольку выхолащивает саму сущность живого. Наиболее широкое распространение редукционизм получил в 18 веке.

Противоположностью редукционизма является витализм, сторонники которого объясняют специфику живых организмов присутствием в них особой жизненной силы. Термин «витализм» происходит от латинского слова vita – жизнь. Философской базой витализма является идеализм. Витализм не объяснял специфики и механизмов функционирования живого, сводя все отличия органического от неорганического к действию таинственной и непознанной «жизненной силы».

Современная биология основными свойствами живого считает:

1)самостоятельный обмен веществ,

2) раздражимость,

3) рост,

4) способность к размножению,

5) подвижность,

6) приспособляемость к среде

По совокупности этих свойств живое отличается от неживого. Биологические системы – это целостные открытые системы, постоянно обменивающиеся с окружающей средой веществом, энергией, информацией и способные к самоорганизации. Живые системы активно реагируют на изменения окружающей среды, приспосабливаются к новым условиям. Отдельные качества живого могут быть присущи и неорганическим системам, но ни одна из неорганических систем не обладает совокупностью перечисленных свойств.

Существуют переходные формы, которые объединяют в себе свойства живого и неживого, например вирусы. Слово «вирус» образовано от латинского virus – яд. Вирусы были открыты в 1892 году русским ученым Д.Ивановским. С одной стороны, они состоят из белков и нуклеиновых кислот и способны к самовоспроизводству, т.е. имеют признаки живых организмов, но с другой стороны, вне чужого организма или клетки они не проявляют признаков живого – не имеют собственного обмена веществ, не реагируют на раздражители, не способны к росту и размножению.

Все живые существа на Земле имеют одинаковый биохимический состав: 20 аминокислот, 5 азотистых оснований, глюкоза, жиры. Современной органической химии известно более 100 аминокислот. По-видимому, такое небольшое число соединений, образующих все живое, является результатом отбора, который происходил на этапе предбиологической эволюции. Белки, из которых состоят живые системы, представляют собой высокомолекулярные органические соединения. В каждом конкретном белке порядок аминокислот всегда один и тот же. Большинство белков выступает в качестве ферментов – катализаторов химических реакций, происходящих в живых системах.

 

Значительным достижением классической биологии стало создание теории клеточного строения живых организмов. В комплексе современных биологических знаний существует отдельная дисциплина, занимающаяся изучением клетки – цитология.

Понятие «клетка» было введено в научных обиход английским ботаником Р.Гуком в 1665 году. Рассматривая среды высушенной пробки, он обнаружил множество ячеек, или камер, которые назвал клетками. Однако с момента этого открытия до создания клеточной теории прошло два столетия.

В 1837 году немецкий ботаник М.Шлейден предложил теорию образования растительных клеток. По мнению Шлейдена, важную роль в размножении и развитии клеток играет клеточное ядро, существование которого было устновлено в 1831 году Р.Броуном.

В 1839 году соотечественник М.Шлейдена анатом Т.Шванн, опираясь на экспериментальные данные и теоретические выводы создал клеточную теориюстроения живых организмов. Создание в середине 19 века клеточной теории стало существенным шагом в становлении биологии как самостоятельной научной дисциплины.

 

Основные положения клеточной теории

1. Клетка – это элементарная биологическая единица, структурно-функциональная основа всего живого.

2. Клетка осуществляет самостоятельный обмен веществ, способны к делению и саморегуляции.

3. Образование новых клеток из неклеточного материала невозможно, размножение клеток происходит только благодаря их делению.

Клеточная теория строения живых организмов стала убедительным аргументом в пользу идеи единства происхождения жизни на Земле и оказала существенное влияние на формирование современной научной картины мира.

 

 

Строение растительной и животной клетки. Прокариоты и эукариоты

 

В строении и жизнедеятельности растительной и животной клеток много общего.

Общие черты растительных и животных клеток:

1. Принципиальное единство строения.

2. Сходство в протекании многих химических процессов в цитоплазме и ядре.

3. Единство принципа передачи наследственной информации при делении клетки.

4. Сходное строение мембран.

5. Единство химического состава.

 

Животная клетка

 

 

 

Растительная клетка

 

 

Растительная клетка отличается от животной клетки следующими особенностями строения:

1) Растительная клетка имеет клеточную стенку (оболочку).

Клеточная стенка находится за пределами плазмалеммы (цитоплазматической мембраны) и образуется за счет деятельности органоидов клетки: эндоплазматической сети и аппарата Гольджи. Основу клеточной стенки составляет целлюлоза (клетчатка). Клетки, окруженные твердой оболочкой, могут воспринимать из окружающей среды необходимые им вещества только в растворенном состоянии. Поэтому растения питаются осмотически. Интенсивность же питания зависит от величины поверхности тела растения, соприкасающейся с окружающей средой. Поэтому у растений тело больше расчленено, чем у животных.

Существование у растений твердых клеточных оболочек обусловливает еще одну особенность растительных организмов — их неподвижность, в то время как у животных мало форм, ведущих прикрепленный образ жизни.

2) У растений в клетке имеются особые органоиды — пластиды.

Наличие пластид связано с особенностями обмена веществ растений, их автотрофным типом питания. Различают три вида пластид: лейкопласты — бесцветные пластиды, в которых из моносахаридов и дисахаридов синтезируется крахмал (есть лейкопласты, запасающие белки или жиры);

хлоропласты — зеленые пластиды, содержащие пигмент хлорофилл, где осуществляется фотосинтез;

хромопласты, накапливающие пигменты из группы каротиноидов, которые придают им окраску от желтой до красной.

3) В растительной клетке имеются вакуоли, ограниченные мембраной - тонопластом. У растений слабо развита система выделения отбросов, поэтому вещества, ненужные клетке, накапливаются в вакуолях. Кроме того, ряд накапливаемых веществ определяют осмотические свойства клетки.

4) В растительной клетке отсутствуют центриоли (клеточный центр).

 

Черты сходства указывают на близость их происхождения. Признаки различия говорят о том, что клетки вместе с их владельцами прошли длительный путь исторического развития.

 

Прокариоты и эукариоты

 

Все организмы, имеющие клеточное строение, делятся на две группы: предъядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

Цитоплазма прокариот по сравнению с цитоплазмой эукариотических клеток значительно беднее по составу структур. Там находятся многочисленные более мелкие, чем в клетках эукариот, рибосомы. Функциональную роль митохондрий и хло-ропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки.

Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 240; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.182 (0.069 с.)