Обозначение, параметры и применение варикапа 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Обозначение, параметры и применение варикапа



В современной электронике появляется всё больше электронных компонентов управляемых напряжением. Это связано с активным развитием цифровой техники. Ранее электронная аппаратура управлялась всевозможными ручками регулировки, кнопками, многопозиционными переключателями, т.е. руками.

Цифровая техника избавила нас от этого, а взамен дала возможность управлять и настраивать устройства посредством кнопок и экранного меню. Всё это было бы невозможно без электронных компонентов, управляемых напряжением. К одному из таких электронных компонентов можно отнести варикап.

Варикап – это полупроводниковый диод, который изменяет свою ёмкость пропорционально величине приложенного обратного напряжения от единиц до сотен пикофарад. Так изображается варикап на принципиальной схеме.

Как видим, его изображение очень напоминает условное изображение полупроводникового диода. И это не случайно. Дело в том, что p-n переход любого диода обладает так называемой барьерной ёмкостью. Сама по себе барьерная ёмкость перехода для диода нежелательна. Но и этот недостаток смогли использовать. В результате был разработан варикап – некий гибрид диода и переменного конденсатора, ёмкость которого можно менять с помощью напряжения.

Как известно, при подаче обратного напряжения на диод, он закрыт и не пропускает электрический ток. В таком случае p-n переход выполняет роль своеобразного изолятора, толщина которого зависит от величины обратного напряжения (Uобр). Меняя величину обратного напряжения (Uобр), мы меняем толщину перехода – этого самого изолятора. А поскольку электрическая ёмкость C зависит от площади обкладок, в данном случае площади p-n перехода, и расстояния между обкладками – толщины перехода, то появляется возможность менять ёмкость p-n перехода с помощью напряжения. Это ещё называют электронной настройкой.

На варикап прикладывают обратное напряжение, что изменяет величину ёмкости барьера p-n перехода.

Отметим, что барьерная ёмкость есть у всех полупроводниковых диодов, и она уменьшается по мере увеличения обратного напряжения на диоде. Но вот у варикапов эта ёмкость может меняться в достаточно широких пределах, в 3 – 5 раз и более.

В современных цветных телевизорах есть такая функция – автонастройка (автопоиск) телеканалов. Нажимаем на кнопку, и весь диапазон сканируется на предмет наличия вещательных программ – телеканалов. Так вот этой функции просто бы не существовало, если бы не было варикапа.

В телевизоре управляющей схемой формируется плавно меняющееся напряжение настройки, которое и подаётся на варикап. За счёт этого меняются параметры колебательного контура приёмника (тюнера) и он настраивается на тот или иной телеканал. Затем происходит запоминание напряжения настройки на каждый из найденных телеканалов, и мы можем переключаться на любой из них, когда захотим.

Кроме обычных варикапов очень часто используют сдвоенные и строенные варикапы с общим катодом. Вот такой вид они имеют на принципиальных схемах.

Они используются, как правило, в радиоприёмных устройствах, где необходимо одновременно перестраивать входной контур и гетеродин с помощью одного потенциометра. Имеются так же обычные сборки, когда в одном корпусе размещается несколько варикапов электрически не связанные между собой.

Оптоэлекторнные приборы

Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.

Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0,5·1012 Гц до 5·1017 Гц. Иногда говорят о более узком диапазоне частот – от 10 нм до 0,1 мм (~5·1012…5·1016 Гц). Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около 1015 Гц).

На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).

Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.

Основные достоинства оптоэлектронных приборов:

высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот;

полная гальваническая развязка источника и приемника излучения;

отсутствие влияния приемника излучения на источник (однонаправленность потока информации);

невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).

Оптрон - прибор, состоящий из излучателя света и фотоприёмника, связанных друг с другом оптически и помещенных в общем корпусе. Иногда О. называют также пару «излучатель-фотоприёмник» с любыми видами оптической и электрической связи между ними. О. используют для связи отдельных частей радиоэлектронных устройств (главным образом вычислительной и измерительной техники и автоматики), при которой одновременно обеспечивается электрическая развязка между ними (как в трансформаторе), а также для бесконтактного управления электрическими цепями (аналогично реле). Разработка О. началась в 60-е гг. 20 в.

 



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 76; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.192.3 (0.006 с.)