Выбор и обоснование структурной схемы устройства 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выбор и обоснование структурной схемы устройства



 

В предыдущем пункте мы рассмотрели несколько вариантов возможной реализации усилителей. У каждого из них есть свои преимущества и недостатки. Нам необходимо выбрать наиболее подходящий тип усилителя.

Согласно техническому заданию динамический диапазон изменения выходного напряжения как на переменном так и на постоянном токе равны  и . Применение линейных усилителей в таком широком диапазоне не выгодно, так как при малых значениях сигнала выходное напряжение сильно искажается, а при больших значениях токов (до  в нашем случае) увеличиваются потери на выходном каскаде. Как следствие имеем невысокий КПД. К тому же применение линейных усилителей при значительных токах увеличивает габариты самого усилителя за счет использования теплоотводящих элементов (радиаторов) больших размеров. В некоторых случаях радиаторы могут занимать больше половины объема всего устройства. Поэтому от использования усилителей классов А, В и АВ отказываемся.

Усилители классов A+ и G тоже можно отнести к линейным усилителям. Они по сравнению с усилителями, работающими в режимах А, В и АВ обладают большим КПД, однако это значение еще не предел. Наивысшими показателями этого параметра обладают усилители класса D или ШИМ усилители. Данный тип усилителей в последнее время широко стал применяться в звуковой схемотехнике, особенно в устройствах питающихся от аккумуляторных батарей (в CD-плейерах, MP3-проигрывателях) за счет своей высокой эффективности [].

 

 

В идеальных усилителях класса D сигнал за период не имеет никакого искажения и никакой генерации шума в слышимой полосе частот, наряду с обеспечением 100%-ой КПД.

Однако, как показано на рис. **, усилители класса D, применяемые на практике, имеют "неидеальности", которые производят искажение сигнала и генерацию шума. Эти "неидеальности" вызваны искаженной формой сигнала переключения, производимой усилителями класса D. Причины этих искажений следующие:

1. Нелинейность в ШИМ сигнале поступающего от модулятора к ключам, из-за ограниченной разрешающей способности и/или колебаний во времени;

2. Временные ошибки, которые вводятся драйверами, такие как время задержки tз, время включения tвкл и время выключения tвыкл;

3. Нежелательные параметры в ключевых устройствах, такие как конечное сопротивление канала транзистора во включенном состоянии, конечная скорость переключения или параметры внутреннего диода;

4. Паразитные связи, которые появляются на печатной плате при изготовлении прибора;

5. Колебания напряжения источника питания из-за его конечного импеданса и реактивной мощности, текущей через цепь постоянного тока;

6. Нелинейность в выходном ФНЧ.

Несмотря на это значение КПД на практике может достигать значений 85-95%. Поэтому при проектировании усилителя напряжения за основу возьмем структурную схему усилителя класса D.

Согласно техническому заданию усилитель должен выдавать на выходе постоянное и переменное напряжения. Поэтому необходимы два источника опорного напряжения: постоянный и переменный с частотой 50 Гц. Причем фаза переменного сигнала согласно ТЗ должна регулироваться в пределах от 0 до 360 эл. град. с возможностью синхронизации от сети. К тому же необходимо иметь внутренний источник синусоидального сигнала с частотой 50 Гц для работы в автономном режиме. На рис. ** представлена структурная схема усилителя.

 


Рис. **. Структурная схема

 

Выбор режима синхронизации осуществляется с помощью переключателя SA1. Кварц ZQ используется для синтеза частоты в 50 Гц в режиме "внутренней синхронизации". С помощью обычных "аналоговых" схем на мультивибраторах или других подобных генераторах трудно обеспечить генерацию синусоидального напряжения с частотой 50 Гц и точностью менее 1%. Это связан с сильной температурной зависимостью номиналов пассивных элементов (особенно конденсаторов). Поэтому нужно использовать иной подход к решению проблемы. В настоящее время западными производителями выпускаются специальные микросхемы для генерации сигналов синусоидальной формы. С помощью таких микросхем можно получить любую частоту от 0 до нескольких десятков килогерц []. Эти микросхемы генерируют частоту, используя в качестве эталонной частоты высокочастотный сигнал от кварца. С помощью счетчиков эта частота делится на более низкую и фильтруется. При этом температурный дрейф частоты на выходе получается много меньше, чем в схемах, собранных на дискретных элементах. Регулирование фазы задающего сигнала производится переменным резистором . Ключ SA2 переключает между собой задающие сигналы, поступающие на вход ШИМ-2. Их уровень от 0 до максимального значения регулируется другим переменным резистором . Со среднего вывода этого резистора сигнал поступает на вход ШИМ модулятора. На его выходе формируются импульсы, длительность которых пропорциональна уровню управляющего сигнала (см. рис. ** (из предыд главы)), поступающего на вход силовой части усилителя. Чтобы следить за напряжением на выходе усилителя, заведена отрицательная обратная связь по напряжению (рис. **), корректирующая сигнал управления. Блок токовой защиты ограничивает величину тока в нагрузке в пределах допустимого значения, т.е. не больше  на переменном токе и не больше  на постоянном. Если усилитель будет длительное время работать на низкоомную нагрузку, т.е. при больших токах, то может произойти перегрев элементов силовой части (транзисторов, работающих в ключевом режиме) и дальнейший выход их из строя. Чтобы предотвратить это в структурной схеме усилителя предусмотрен блок тепловой защиты. Заметим, что даже если правильно рассчитать необходимую площадь теплоотводов (радиаторов) при максимальной нагрузке, могут возникнуть ситуации, когда отвод тепла от транзисторов с их помощью может быть затруднен. Например, если максимальная температура окружающей среды выше расчетной или если в процессе длительной эксплуатации прибора ухудшился процесс отвода тепла от транзистора (оседание пыли на радиатор, увеличение теплового сопротивления между радиатором и корпусом транзистора и т.п.).

 

1.3 Выбор силовой части усилителя

 

Существует ряд способов выполнения выходных каскадов ШИМ усилителей. Рассмотрим некоторые из них. На рис. ** представлена схема, которая часто называется двухтактной. Действительно, за период энергия от входного источника дважды передается к LC-фильтру и нагрузке. Каждый из ключей замкнут в течение интервала  (импульс) в своем полупериоде. Для данной и других двухтактных схем удобно определять коэффициент заполнения импульсов  как отношение  к . Следовательно, коэффициенту  соответствует включенное состояние каждого ключа, продолжающееся половину периода. При  оба ключа постоянно закрыты. В преобразователе может быть использована как однофазная двухполупериодная схема выпрямления, показанная на рис. **, так и другая симметричная схема – мостовая. Явное достоинство двухтактной схемы – общая точка управления ключами (истоки транзисторов VT1 и VT2 объединены), что позволяет значительно упростить выходной каскад устройства управления.

 

 

Характерным для двухтактной схемы является напряжение на закрытом ключе – его максимальное значение равно  без учета влияния индуктивности рассеяния первичной обмотки трансформатора.

Для схемы на рис. ** существенное значение имеет магнитная связь между обмотками и  – чем она лучше, тем меньше индуктивность рассеяния  каждой из обмоток и, следовательно, тем меньше выброс напряжения на ключе при его запирании. Для снижении выброса напряжения и возможности выбора транзистора с меньшим допустимымнапряжением стока (коллектора) помимо конструктивных решений по изготовлению трансформатора, приводящих к снижению , пригодны различные типы демпфирующих цепей: стабилитроны, RC- или RCD-цепи. Особенность применения такой цепи в двухтактной схеме заключается в том, что она выполняется общей для двух транзисторов, что позволяет выполнить все устройство более простым и дешевым.


 

Схема преобразователя, работающего по принципу двухтактного и обычно называемого полумостовым, показана на рис. **. В данной схеме, использующей два входных источника напряжения  и  в трансформаторе, в отличие от предыдущей схемы, применяется только одна первичная обмотка . Ключи VT1 и VT2 включаются поочередно на время  в каждом полупериоде работы. К точкам а, б схемы поступает прямоугольное импульсное напряжение, получаемое от вторичных обмоток ,  и выпрямленное диодами VD1, VD2. Длительность импульсов регулируется управляющими сигналами на затворах ключей, коэффициент заполнения  изменяется от 0 до 1. Частота первой гармоники напряжения, которую необходимо подавлять LC-фильтром, равна, так же как и в двухтактной схеме, удвоенной частоте работы ключей и трансформатора, что является преимуществом данной схемы по сравнению с однотактной.

 


Процессы в полумостовом преобразователе в основном сходны с процессами в преобразователе со средней точкой первичной обмотки трансформатора. Максимальное напряжение на ключах не превышает , а индуктивность рассеяния, приведенная к первичной обмотке , в отличие от двухтактной схемы не увеличивает максимальное напряжение на запираемом ключе. Схема преобразователя, показанная на рис. **, требует двух источников постоянного напряжения на входе, что почти всегда не применимо на практике. При использовании емкостного делителя с конденсаторами равной емкости и подключенного к выводам одного источника напряжения  достаточно просто получаются два источника напряжения, необходимые для работы полумостовой схемы (рис. **). Постоянное напряжение на каждом из конденсаторов С1, С2 равно . Емкость конденсатора делителя должна быть такой, чтобы пульсация напряжения на нем была достаточно малой. Естественным шагом в развитии полумостовой схемы с емкостным делителем является схема, в которой все плечи моста выполнены как ключи (рис. **). Работа схемы и ее возможности во многом определяются выбранной последовательностью переключения транзисторов VT1-VT4 в интервале паузы. Рассмотрим работу схемы более подробно. Для этого представим преобразователь в виде схемы замещения (рис. **).

 


 

Трансформатор на этой схеме представлен в виде идеального с обмотками ,  и  и линейной индуктивностью намагничивания , подключенной к первичной обмотке . Индуктивности рассеяния обмоток пока не принимаем в рассмотение. Индуктивно-емкостной фильтр и нагрузку представим источником постоянного тока . В схеме возможны 4 последовательности переключения транзистора за период T.

1. Во время импульса в каждом полупериоде  открыты два диагонально расположенных ключа VT1, VT4 (VT2, VT3). В паузе, т.е. в интервале  (рис. **), все четыре ключа закрыты. В трех остальных случаях работа ключей отличается только их состоянием в интервале паузы.

2. В паузе в первом или во втором полупериоде открыты два верхних ключа VT1, VT3;

3. В паузе в первом или во втором полупериодах открыты два нижних ключа VT2, VT4;

2. В паузе в первом полупериоде открыты два верхних ключа VT1, VT3, а во втором – два нижних VT2, VT4.

Последовательности переключения 2…4 равноценны, за исключением того, что в последнем случае перегрев всех ключей является равномерным. Поэтому порядок переключения 4 является предпочтительным по сравнению со случаями 2 и 3.

 


 

Отличие в работе схемы с выключенными транзисторами во время паузы от варианта, когда в паузе открыты либо транзисторы VT1, VT3, либо транзисторы VT2, VT4 состоит в том, что: во-первых, различен контур прохождения тока намагничивания  во время паузы. Если все ключи разомкнуты, ток намагничивания вынужден проходить во вторичной цепи через диоды VD1 и VD2 поочередно, а при замкнутых ключах в паузе ток намагничивания проходит через них. Во-вторых, имеется отличие в поведении тока, связанного с индуктивностью рассеяния трансформатора.

Будем считать, что индуктивность рассеяния обмоток приведены к первичной. Если в паузе все транзисторы выключены, единственная возможность прохождения тока в индуктивности рассеяния - использование контура, состоящего из внутренних диодов полевых транзисторов и входного источника . Таким образом, достаточно быстро ток  становится равным нулю. В другом случае, когда в паузе первичная обмотка трансформатора замкнута ключами, ток  проходит через них. Указанные различия (малосущественные на первый взгляд) приводят к разным возможностям схем и их характеристик при работе на высоких частотах переключения, которые более подробно рассмотрены в [мелеш]. В случае, когда транзисторы в паузе разомкнуты мостовой преобразователь является, по существу, трансформаторным аналогом понижающего регулятора напряжения. На рис. ** показаны диаграммы процессов в схеме замещения мостового преобразователя.

Мостовая схема преобразователя вобрала в себя лучшее от двухтактной и полумостовой схем преобразователей:

1. Только одна первичная обмотка трансформатора (как в полумостовой схеме);

2. Напряжение на закрытом ключе не превосходит  и не требует подключения демпфирующих цепей для устранения выбросов напряжения на запираемом транзисторе (как в полумостовой схеме)

3. к первичной обмотке во время импульса приложено напряжение , поэтому ток, проходящий через ключи, вдвое меньше, чем в полумостовой схеме (этот ток такой же как в двухтактной схеме).

Пульсации напряжения на выходе могут быть определены из рассмотрения импульсного напряжения на входе LC-фильтра.

Мостовой преобразователь без гальванической развязки нагрузки и источника питания (рис. **) широко применяется в звуковой схемотехнике. Нагрузка в этой схеме подключается к диагонали моста через низкочастотные фильтры L1C1 и L2C2. При нулевом сигнале задания транзисторы VT1- VT4 переключаются с  и потенциалы в точках а и b равны соответственно , а напряжение на нагрузке .

 


 

При изменении сигнала задания на величину  (рис. **) изменяются и длительности открытого состояния транзисторов VT1-VT4 на величину . Причем длительности открытого состояния транзисторов VT1, VT4 станут равными , а транзисторов VT2, VT3 соответственно , где  – длительность открытого состояния транзисторов при нулевом сигнале задания .

Штриховыми линиями отмечены установившиеся значения токов в дросселях L1, L2 и напряжений на конденсаторах С1, С2 при сигнале задания . Нарастание и спад токов и напряжений будет происходить по другим законам, чем в установившемся режиме при нулевом сигнале. К примеру, ток в дросселе L1 нарастает под действием разности напряжений , а спадает уже под действием напряжения . Причем всегда выполняется неравенство , т.к. . Параметры ФНЧ берутся одинаковыми: L1=L2, C1=C2.

Чтобы выровнять потенциалы точек а и b в схему включен конденсатор С3. Это необходимо, так как параметры транзисторов VT1-VT4, а также выходных НЧ фильтров имеют разброс. К тому же такая схема позволяет сгладить пульсации напряжения на нагрузке. Такая схема включения позволяет получать на нагрузке напряжения величиной в доли вольт при больших питающих напряжениях, что достаточно важно в нашем случае. К тому же КПД таких схем может достигать величин 85-95% (100% в идеале). Поэтому в качестве выходного каскада усилителя напряжения выбираем данную схему.

Структурная схема усилителя преобразуется к виду, представленному на рис. **.

 

 


2. Расчет усилителя

 



Поделиться:


Последнее изменение этой страницы: 2021-05-27; просмотров: 64; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.42.168 (0.025 с.)