Отличие прокариот от эукариот. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Отличие прокариот от эукариот.



Мир микробов

клеточные

внеклеточные

прокариоты - бактерии - арихибактерии (самая первая форма бактерий, для человека не имеют значение) - синезеленые водоросли эукариоты - простейшие - грибы вирусы прионы вироиды
         

Отличие прокариот от эукариот.

  прокариоты эукариоты
Размер 1-10 мкм 10-100 мкм
Возможность анаэробного дыхания возможно невозможно
Мембранные структуры Отсутствуют присутствуют
Генетический материал Молекула ДНК в дисперсном состоянии, не имеет ядерной мембраны Имеют истинное ядро т.к. генетический материал ограничен ядерной мембраной.
Форма генетического материала Кольцевая хромосома
Белки гистоны Отсутствуют Присутствуют
Тип размножения Простое бинарное деление Митоз, мейоз  
Синтез белка На рибосомах (70S) Рибосомы (80S)
ЭПС Нет есть
Особенности клеточной стенки Имеет особые белки пептидогликаны Нет стеролов Есть хитин, целлюлоза и т.д. Есть стеролы

 

Вирусы это неклеточная форма, генетический материал представлен РНК или ДНК. Не имеют собственного метаболизма. Абсолютные внутриклеточные паразиты на генетическом уровне. Могут жить только внутри живой клетки изменяя ее геном. Присуща наследственность, изменчивость.

Прионы или белки PrPSc -возбудители конформационых болезней. Не имеют наследственного материала, являются инфекционными агентами (неживые). Prcell отличаются конформацией. Находятся в клетке, выполняют роль передачи импульсов, изменив конфигурацию становятся вредными и вызывают губчатые энцефалопатии. Прионы передаются с пищей, препаратами полученными от животных.

Вироиды нуклеиновые кислоты без белка. Они мигрируют, перемещаются вызывают болезни у растений и пока неизвестно что бы они вызывали болезни у человека.

Генетическая таксономия

Идентификация бактерий на основании генетического родства. В основе определение генетических структур клетки - ДНК, внехромосомных структур – плазмиды, транспазоны. Доказано что состав основавний ДНК витоспецифичны т.е. определяется процентное содержание ГЦ от общего содержание всех оснований это может иметь значении е для определение вида. Определяется сходство или комплементарность кислот между различными организмами методом гибридизации. Устанавливают гомологию последовательности нуклеиновых кислот. Этим методом определяют родство между микроорганизмами. % сходства одного порядка равен 80%, для семейства 90%, рода 95% для вида почти 100%.

Первый труд в котором были описаны и классифицированы бактерий был составлен Берджи в 1923 г. В нем бактерии разделены на 25 группы. Патогенные всего 20 групп. В определителе бактерии разделены на Gracilicutes – тонкостенные, Firmicutes - толстостенные, Teniricutes – мягкотелые.

Ультраструктура бактериальной клетки

Бактериальная клетка имеет постоянные структуры – клеточная стенка, цитоплазматическая мембрана, цитоплазма, рибосомы, нуклеоид. Непостоянные – жгутики, ворсинки, капсула, включения, споры.

Постоянные структуры.

Клеточная стенка: Функции – защитная, формообразующая, участвует в делении, транспортная, рецепторная, определяет антигенные свойства бактерии, определяет тинкториальные свойства бактерии (диффузии краски). Нарушение синтеза клеточной стенки приводит либо к гибели бактерии, либо к образованию сферобластов, протобластов (теряют способноть к размножению) или L-формы (сохранили функцию размножения). Утрата связана с антибиотиками, влияние лизоцина. Утрата будет сопровождаться (       ) процесса и антибиотиками не лечится.

Главный элемент к.С Муреин – полимер, связываются фрагменты связываются уникальными аминокислотами (есть только у прокариот), муреин является мишенью для антибиотиков именно избирательность антибиотиков связана с муреином. КлС Г(-) тонкая, в ней выделяют ригидный слой образованный пептидогликаном (20%) и пластичный слой его толщина значительна и в нем много липополисахарида (80%), который имеет базисную часть это молекула полисахарида, липид-А (отвечает за токсичность, пирогенность), О-специфические боковые фрагменты (состоят из полисахаридов, определяют антигенные свойства). Г(+) стенка толще состоит из многослойного пептидогликана 90%, тейхоевые кислоты. Тк пронизывают клеточную стенку и связываются с ПГ за счет них определяются антигенные свойства, липополисахаридов почти нет. Белки порины пронизывают КС бактерии, но размеры разные у Г(-) больше, у Г(+) меньше.

Цитоплазматическая мембрана: функция: избирательная проницаемость, осмотический барьер, участие метаболизме, энергетический обмен (в составе много ферментов – цитохромы, оксидазы, дегидрогиназы, атефазы), репликация, участие в спорообразовании, выделительная.

Цитоплазма коллоидная система состоит из воды включений органелл, место где идет метаболизм.

Нуклеоид замкнутая ДНК (бактериальная хромосома) имеет гаплоидный набор. Методы выявления нуклеоида: специальная микрохимическая реакция по Фельгину, обнаружение в электронный микроскоп. Функции: хранение генетической информации, определение жизнеспособности клетки.

Непостоянные структуры.

Капсула: по химическому составу полисахаридное в-во, слизистый слой, белки, липиды. Может быть большой (больше чем клетка), маленькой можно обнаружить. Функции: защитная (от фагоцитоза макрофагами), дополнительный фактор патагенности, защищает от действия антилел, антибиотиков, придает адгезивные свойства. Продукция капсулы исключительно в живом организме, а не Вов внешней среде, на искусственной питательной среде (обогощенной полисахаридами) небольшая часть микробов может продуцировать капсулу (пневмококки, клепсиелы, возбудитель сибирской язвы).

Споры: является защитной реакцией присущей некоторым микроорганизмам, при попадании в неблагоприятные условия (внешняя среда - отсутствие воды, питательных веществ, старение культуры, неблагоприятная температура), обычно палочковидные (в зависимости от этого они делятся на бациллы, кластридии (Сп+) и остальные бактерии). Спорообразование у прокариот является формой сохранения генетического материала клетки при неблагоприятных условиях, а не метод размножения (из одной клетки 1 спора). Обязательное условия для спорообразования необходимо присутствие кислорода. Во внешней среде могут жить десятки лет. После прорастания (4-5 часов) вегетативная форма (способная к делению, метаболизму). Разрушаются оболочки споры, образуется ростовая трубочка, синтез клеточной стенки.

Процесс спорообразования:

1. образование спороносной зоны в которой находится нуклеоид,

2. образование проспоры при этом спорогенная зона отделяется,

3. образование кортекса – оболочки споры,

4. отмирание вегетативной части клетки и освобождение споры.

По локализации: спора может занимать центральное положение, субтерминальное, терминальное.

По величине: меньше чем диаметр палочки (бациллы), больше диаметра палочки (клостридии)

Свойство споры:

Устойчивость. Термо- связано с химическим составом: мало воды 5-10%, много солей кальция, есть дипиолиновая кислота, поэтому выдерживает пастеризацию, кипячение. Что бы убить спору нужна T=180-2000, 20 мин, т=1200 + 1,5 атм.

Спорообразование присуще:

Бацилле антрацид – сибирская язва

Кластридии – гангрена, столбняк

Возбудителям ботулизма

           Жгутики: органы движения. Поверхностные структуры в виже ниточек, обнаруживаются только в электронный микроскоп в составе сократительный белок флагелин, прикрепляются к цитоплазматической мембране. По количеству и расположению все делятся на: монотрихии, лофотрихии (пучок), амфотрихии (два пучка), перитрихии (по периметру), Длина Ж больше чем длина клетки. Наиболее подвижны монотрихии, лофотрихии.

           Методы изучение подвижности:

Висячая капля

Раздавленная капля

Темнопольная микроскопия

Фазоконтрастная микросокпия

           Ворсинки: тонкие полые нити белковой природы, коротенькие, которые покрывают поверхность клетки, очень много, не выполняют локомоторную функции. Функции: адгезия (ворсинки 1 типа, с ними связана патогенность бактерии), конъюгативная (половые ворсинки) их мало.

           Включения: зерна волютина (метафосфатические обладают свойством метохромазии – способность окрашиваться не в цвет красителя), жировые зерна, гликоген. Запас питательного вещества.

 

ОСНОВНЫЕ МОРФОЛОГИЧЕСКИЕ ФОРМЫ БАКТЕРИЙ.

Ø Шаровидные

Ø Палочковидные

Ø Извитиые (вибрионы, спириллы (имеют лофотрихии), спирохеты)

Прокариоты имеющие особую морфологию:

Ø Спирохеты

Ø Рикеции

Ø Актиномицеты

Ø Хламидии

Ø Микоплазмы

 

Спирохеты: нитевидные, спиральнозакрученые, извитые есть локомоторный внутренний аппарат представленный осевой нитью миофибрилл.

Семейства спирохет.

1. Борели – грубые завитки

2. Трепонемы – равномерные завитки

3. Лептоспиры имеют первичные завитки, и вторичные, утолщенные концы

Дифференциация проходит: по количеству завитков, характеру концов, по характеру движения.

Типы движения:

Ø Винтообразные (трепонема, лептоспира)

Ø Вперед-назад, право-лево

Характер движения:

Ø Плавные

Ø Резкие

Методы изучение: окраска по Романовскому-Гинзе. Борели – синие, остальные розовые. Микроскопия темнопольная микроскопия, фазово-контрастная.

Риккетсии: прокариоты, маленьких размеров,

Полиморфные (коковидную, кокобактериольную, палочковидные, длинную нитевидную) связано с особенностями деления, перегородка неполная и по этому клетки могут принять различную форму.

Облигатные внутриклеточные паразиты на искусственных средах не растут, могут культивироваться только в живой клетке (куриного зародыша), в организме насекомых.

Экологическая ниша: заселяют организм членистоногих, передаются трансмессивным путем (укусы) от насекомых – вши, блохи, клещи. Примеры: сыпной тиф.

Методы выявления: окраска – Романовскому – Гинзе, по Здоровскому, при этом клетки в которых находятся риккетсии окрашиваются в один цвет, ядро в другой, сама риккетсия в третий. Микроскопия: цветовая, фазово-контрастная, электронная.

 

Хламидии: возбудители трахомы, урогенитальный хламидиоз. Прокариоты, маленьких размеров, облигатные внутриклеточные организмы, энергетические паразиты.

Морфологические формы:

Ø Внеклеточная – элементарное тельце, сферическая форма, маленького размера 0,3 мкм, имеющая клеточную стенку, мембрану

Ø Внутриклеточная – ретикулярное тельце, находится на разных стадиях созревания, можно обнаружить только внутри клетки, там созревает и разрывает клетку.

Методы обнаружения: окраска по Романовскому – Гинзе, фазово-контрастная микроскопия, реакция имунофлюоресценции, метод иммуноферментного анализа.

 

Микоплазмы: болезни: пневмония, бронхит, урогенитальный микоплазмоз, неонатальная патология.

Особенности:

Ø Нет клеточной стенки

Ø Очень маленькие размеры

Ø Полиморфны (сферические, нитевидные)

Ø Не красятся по Граму

Ø Не чувствительны к пенициллину

Ø Являются мембранными паразитами – садятся на клеточную стенку и вытягивают в-ва (холестерин)

Методы изучение: культивирование (с добавлением холестерина), растут медленно, РИФ, ИФА, ПЦР, фазово-контрастная микроскопия после окраски по Романовскому-Гинзе.

Актиномицеты: прокариоты имеющие сходство с грибами. Полиморфные (ветвистые, короткие палочки) способны образовывать мицелий, Грам+, кислотонеустойчивые. Растут медленно. Места обитание: внешняя среда, полость рта (нормальная микрофлора). Могут размножаться спорами.

Изучение: окраска – по Романовскому-Гинзе, культивирование.

Репродукция вируса.

1. Адсорбция. Прикрепление вирона к клеточной поверхность за счет рецепторов на клетке узнающих субстанции на поверхности вируса. Высоко специыфический процесс. Например вирус гриппа способен адсорбироваться на клетках продуцирующих муцин. Клеточным рецептор выступает сиаловая кислота. Для ВИЧ-вируса СД4. При этом одни вирусы имеют клеточные рецепторы только в организме приматов. Другие вирусы только среди бактериальных клеток, третьи только в организме насекомых и т.д.

2. Проникновение вируса в клетку. Рецепторный эндоцитоз. Вирус инвагинирует внутрь клетки с образованием фагосомы внутри клетки (Грипп). Слияние мембран – вирусная оболочка и плазматическая мембрана клетки сливается (ВИЧ), этот механизм включает и соседние клетки не инфицированные вирусом с образованием синцития.

3. «Раздевание вирона». Депроитенизация. Удаление вирусных защитных оболочек и освобождение генома. Это происходит в определенных участках при участии клеточных ферментов. Эта стадия необходима для экспрессии генома вируса, что бы все гены вируса заработали.

4. Транскрипция. Переписывания генетической информации ДНК или РНК на рибосомы клетки по законам генетического кода. Транскрипция заканчивается образованием иРНК. При этом у вирусов ДНК-содержащих иРНК синтезируется на одной из нитей ДНК. Вирусы РНК-содержащие+нитевые процесс транскрипции отсутствует РНК выполняет функцию иРНК. РНК-нитевые процесс транкрипции включает образование иРНК и далее. В составе этих вирусов есть фермент РНК полимераза. Ретровирусы (ВИЧ) это РНКовые вирусы, но в составе есть специальный фермент – обратная транскриптаза транскрипция у таких вирусов включает: обратное переписывание, сначала образуется ДНК (прегеномная), затем транскрипция прямая с образованием иРНК (гомологичная геномная) и далее трансляция – белок.

5. Трансляция процесс перевода иРНК на специфическую последовательность аминокислот. Этот этап необходим для синтеза вирусного белка. Есть 2 способа формирования вирусных белков.

1. иРНК транслируется в гигантский полипептид предшественник, который потом подвергается нарезанию на отдельные белки (полиомелит). Процесс нарезания происходит в специфических точках с помощью протеолитических ферментах. В результате образуются белки-слияния т.е. у вириона появляются инфекционные свойства.

2. и РНК транслируется с образованием зрелых белков. В качестве модификации может выступать-гликозилирование, метилирование, сульфирование, фосфолирирование с ним связан механизм антивирусного действия интерферона.

Многие противовирусные препараты способные задержать репродукцию на ходят точку мишени в этой стадии.

6. Репликация вирусной РНК. Синтез молекул нуклеиновой кислоты гомологичной вирусному геному. Репликация ДНК-содержащих вирусов осуществляется за счет ДНК-полимеразы. Репликация РНК-содержащих при участии фермента катализатора. И по этому у +нитевых вирусов практически не отличается от транскрипции. У – нитевых отличается только длинной образовшихся РНК.

7. Сборка вирусных частиц. Белки, нуклеиновые к.этот процесс разобщен, протекать в разных струткурах и по времени. Вирусные Б и НК обладают способностью узнавать и самопроизвольно соединятся друг с другом. Просные вирионы собираются на мембранах ЭПС, сложные на цитоплазматическоей мембране образуя почку. Многие ДНК-вирусы собираются в ядре, на мембране где образуются нуклеокапсиды из этих структур вирусы транспортируются на поверхность клетки.

8. Выход вирусных частиц из клетки. Происходит за счет: «взрыва» - при этом клетка гибнет. «почкование» - характерен для сложных вирусов при этом клетка не погибает.

Выделение в-в из клетки.

В процессе жизнедеятельности бактериальная клетка выделяет многие в-ва:

  1. БАВ (ферменты)
  2. Токсины
  3. Антибиотикоподобные вещества – бактериоцили

Они выделяются ч/з ЦПМ, содержат сигнальный пептид для прохождения, а при выходе пептид остается в мембране. Процесс выделение это не выброс шлаков, а механизм адаптации клетки к условиям внешней среды. Это определяет конкурентные свойства бактерий.

Ферменты бактерий.

Ферменты – специфические белковые катализаторы, которые присудствуют во всех живых клетках и за каждое превращение отвечает фермент.

Регуляторные, которые работают на уровне генома воспринимает все метаболические сигналы и изменяют каталитическую активность.

Эффекторные ферменты – определяют метаболизм в б/к можно выделить 6 класов этих ферментов:

1. Оксидоредуктазы – катализируют о-в реакции между субстратом (НАД, НАДФ, каталаза, ДГ);

2. Трансферазы – катализирует реакции переноса химических групп и одноуглеродных остатков;

3. Гидролазы – катализируют реакции гидролиза связей (протеиназа, липаза, гликозидаза);

4. Лиазы – катализирует реакции присоединения и обрыва групп по 2-м связям (альдолаза, фумаразы, декарбоксилазы, дезаминазы);

5. Изомеразы – катализируют реакции изомеризации (топаза);

6. Лигазы – катализируют реакции синтеза.

Синтез ферментов видоспецифичен, постоянен и поэтому набор ферментов у бактерий используется для их видовой идентификации. Ферменты которые синтезируются независимо от условий обитания клетки – конститутивные. Ферменты синтез которых зависит от определенного субстрата в среде обитания – индуцивельные.

Получение микробных ферментов важная отрасль промышленной микробиологии, широко используется в биотехнологии. Промышленная микробиология получает: амилазы, липазы… как лекарста, питательные добавки, пектиназы – для осветления соков, рибонуклеазы, ДНК-лагазы, полимеразы – в генной инженерии для моделирования нуклеиновых кислот.

Метаболизм.

Азот необходим для синтеза аминокислот, белков, пуриновых, пиримидиновых нуклеотидов, для витаминов. Использование неорганического азота происходит при ассимиляции под действием нитратредуктазы Б, дессимиляции – сопровождается выделением газообразных форм азота – под действием нитратредуктазы А, восстановлением нитратов в нитриты. Появление азота служит для идентификации бактерий. Способность разлагать определенные аминокислоты тоже как идентификационные тест.

Высоко молекулярные соединения неспособны проходит ч/з клеточную стенку поэтому утилизировать белковый азот могут бактерии которые выделяют экзоферменты протеазы они расщепляют белки до пептидаз, поэтому протеолитическая активность используется для оценки ферм активности.

При выращивании в лабораторных условиях для источника азота используют пептоны, или препараты неполно гидролиза белка, белковые гидролизаты (продукт первичного гидролиза белка) – рыбы, мяса (сухожилия, костная мука, фасции).

Фосфор основной его источник неорганические фосфаты, отдельные нуклеиновые кислоты.

Сера получается из цистеина, метионина, витаминов (биотин, тионин), глютатион. Это определяет о-в потенциал клетки. Утилизируется в форме сульфатов и при этом переводит окисленную форму в восстановленную под действием сульфатредуктазы – с образованием сероводорода. Обнаружение сероводорода тоже идентификационный тест.

Кислород включается в бактериальную клетку из молекулярного кислорода с помощью оксигеназ и опосредовано из воды, СО2 в зависимости от потребности в молекулярно кислороде бактерии делят на 5 основных групп:

1. Облигатные аэробы – способны получать энергию только путем дыхания (псевдомонады, вибрионы, бруцеллы) имеют фермент супроксиддесмутазу, каталазу

2. Облигатные анаэробы – метаболизм происходит в отсутствии свободного кислорода т.к. кислород ля них токсичен.

3. Факультативные анаэробы – растут как в присутствии свободного кислорода так и в отсутствии т.к. могут переключатся с дыхания на брожение пероксидаза

4. Аэробтолерантные – способны расти в присутствии атмосферного кислорода, но не используют его в качестве источника энергии (молочно-кислые бактерии) супреоксид десмутаза, пероксидаза

5. Микроаэрофилы (капнофилы)– нуждаются в кислороде для получения энергии в маленьких количествах, но лучше растут в присудствии высокой концентрации СО2 (гонококки, кампилобактерии, хеликобактери)

Катаболизм.

           Реализуется ч/з образование молекулы АТФ «разменной монеты», может превражатся в АДФ, АМФ. Эта неустойчивость позволяет выполнять функцию переноса химической энергии. Синтез у гетеротрофов осуществляется двумя способами:

  1. Окислительное фосфолирирование – дыхания при котором происходит транспорт электрона по дыхательной цепи у эукариот в митохондриях, у прокариот в ЦПМ. Перенос происходит по стандартной схеме: Субстрат → НАД → флавопротеины → железосодержащие белки→хиноны→цитохромы (а,в,с)→конечный акцептор. Окислению могут подвергаться органические субстраты идет до СО2 и воды. Если субстрат неорганическое в-во, то это сероводородное (железное) дыхание. В реакциях окисления работают дегидрогеназы. Аэробное дыхание используется у сапрофитов, патогенные для человека имеют это дыхание (псевдомонады, холерные вибрионы).
  2. Субстратное фосфолирирование – брожение

Катаболизм углеводов.

           Способность утилизировать углеводы важный идентификационный признак. Базовый субстрат – Глюкоза она используется как при дыхании, так и при брожении. Протекает одинаково у аэробов и анаэробов. Пути превращения:

  1. Гликолиз – доминирует у энтеробактерии, конечное превращение идет с образованием пирувата (фермет аелаза). Затем он полностью окиляется и превращается в СО2 в цикле Кребса (ферменты дегидрогиназы)
  2. Пептофосфатный путь – не имеет специального назначения (дополнительный)
  3. Кето-дезокси-6-фосфо глюканатный путь (КДФК) – только у прокариот (бактерий). Не образуется млочной муравьиной кислот.

Катаболизм азот содержащих органических сединений.

           Происходит ч/з декарбоксилирования с образованием СО2 и работают ферменты декарбоксилазы. Происходит за счет дезаминирования, конечные продукты аммиак, индол, триптофан. Происходит за счет периаминироания. Определение ферментов используется для идентификации.

Катаболизм жиров.

           Происходит ч/з гидролиз кислот до глицерина и свободных кислот. Далее окисление с образованием ацетил КоА → цикл Кребса.

Анаболизм.

           Углеродные соединения (сахара, аминогруппы) образуются в ходе синтеза продуктов окисления пирувата и ц. Кребса. Эти продукты используются для синтеза моно-, ди-, полисахоридов. Синтез происходит на рибосомах в сочетании в мРНК ДНК-азы, РНК-азы идет синтез моносахарав, жирных кислот полимеров белков лигазы, синтетазы, пептидазы.

Взаимосзясь метаболизма и катаболизма самая прямая разграничение условное. Между ними гибкий баланс, главный метаболит пируват.

РОСТ И РАЗМНОЖЕНИЕ БАКТЕРИЙ

Рост- увеличение массы клеток, размножение – увеличение чила популяции клетки. Если бактерии культивируются в жидкой питательной среде то в процессе роста и размножения выделяют несколько фаз:

  1. Начальная фаза (ЛАГ) – 2 часа, клетка увеличивается гтовится к делению. В этой фазе увеличивается количесвто рибосом.
  2. Экспотенциальная (ЛОК) – скорость деления максимальная, в эту фазу максимальная чуствительность к антифиотикам.
  3. Стационарная – постоянное количество микробных клеток
  4. Отмирание – гибель клеток и накопление кислых продуктов метаболизма в питательной среде

 

Факторы влияющие на рост и размножение:

  1. Культуральная среда – должны иметь определенный pH, стерильны, содержать углерод, азот, фосфор (5:1:0,3)
  2. Температура – по этому микробы мезофильные (20-400), термофилы (470), сихрофилы (0 - +10)
  3. Аэрация – присутствие свободного кислорода или его отсутствие
  4. Концентрация ионов Н – большинство растут при 7,2, а некотрые растут в щелочной среде 8 (холерный вибрион), а некоторые килую (лактобактери). Поддержание рН необходимо для бактерий образующих кислые продукты. Для поддержания рН добавляют бикарбонаты, фосфаты.

           Экология микроорганизмов. Микрофлора воды, воздуха, почвы.

           Микробные биоценозы, влияние на бактерии физических факторов.

           На Земле микробы живут практически во всех регионах, климатических зонах и т.д. Обнаружены следы микроорганизмов в космосе.

Факторы влияющие на микроорганизмы:

Температура: по этой характеристики делятся на психрофилы (от-10 до +10), микробы лучше переносят низкие температуры; мезофиллы (от +20 до +40) практически все паразитические симбиоитные бактерии, человек для них идеальная питательная среды; термофилы (от +50 до +70).

Температурный минимум – температура при которой микроб замедляет жизнедеятельность.

Температурный максимум – температура при которой жизнедеятельность прекращает.

Температурный оптимум – оптимальная среда для микроба.

           В природе микробы размножаются только в воде и почве. Стоки воды большого города имеют бактерии которые разлагают вредные вещества и создают для патогенных бактерий неприемлемые условие происходит самоочищение.

Ø Антагонизм – одному из организмов причиняется вред. Возможно, что один вид размножается быстрее и другому не хватает питания. Возможно выделение одним микробов продуктов обмена, которые изменяют характеристики среды и другой не может развиваться. Выделение антибиотиков.

Ø Симбиоз – любое совместное проживание макро и микроорганизмов. Классическим симбиозом является мутуализм при этом два организма извлекают пользу. Метабиоз – продукт жизнедеятельности одного микроба, питательная среда другого, разновидность сателитизм – один микроб выделяет продукты, которые стимулирует рост другого микроба. Синергизм – повышается жизнеспособность под действием в-в выделяемых другими бактериями. Комменсализм – один из членов микробиоза извлекая питание из другого не нанося ему вреда.

Ø Хищничество

Ø Паразитизм

Типы заболевания в зависимости от источника:

Антропонозные – источник человек

Зоонозные, зооантропонозные – источник животные

Сапронозные – источник сама окружающая среда. Долгое время холерный вибрион считался антропонозом, но недавно было выявлено что он сапрофит.

           Но для большинства организмов окружающая среда прожиточный этап. Поэтому необходима оценка окружающей среды.

Методы оценки микробиологической чистоты объектов окружающей среды:

1. Прямые – подразумевают нахождение на объектах внешней среды патогенных микроорганизмов.

2. Косвенные – выявление санитарно-показательных микроорганизмов, они должны указывать возможность загрязнения и легко культивируются. Это микроорганизмы выделяются из организма человека.

Санитарная чистота воздуха.

СПМ: золотистый стафилококк, гемолитический стрептококк, споры плесневых грибов. Определяют общее микробное число – кол-во бактерий на 1м3, число стафилококков, стрептококков, грибов по отдельности.

Классы чистоты медицинских помещений:

А) Повышенной чистоты – операционные, родильные блоки, боксы для ожоговых.

Б) чистые – процедурные, перевязочные

В) условно чистые - палаты

Г) грязные – коридоры, туалеты, кабинеты

Методы определения чистоты воздуха:

Для общего числа – МПБ, для стафилококка – желточный агар, для стрептококков – кровяной агар, грибы – среда собурон.

Методы забора воздуха:

1)седиментация по Коху – открыть 2 чашки с питательной средой, ставить в термостат, на следующий день =считают 250 и менее чистые, 250-500 условно чистые, 500 и более грязные

2) 2 чашки открыть на 5 минут→термостат→подсчет по формуле Омелянского: за это время оседает столько микробов сколько содержится в столбе воздуха.

3) аспирационный метод – аппаратом Кротова. В аппарат помещается чашка с средой, над чашкой проходит поток воздуха и происходит посев. Зная скорость потока, время экспозиции и количество колоний можно подсчитать общее число микробов.

Санитарная чистота воды.

СПМ: общие колиформные бактерии ферментирующие лактозу при 370, термолтолирантные ферментирующие бактерии при 400. В 100 = 0 бактерий, колибактериофаги они указывают на вирусное загрязнение в 100 мл=0. Общее микробное число – число бактерий образующих колонии в 1 мл среды=50 КОЕ, споры сульфит продуцирующих бактерий, лямблии 50л=0, энтреробактерии.

Среды для колиформных бактерий: среда Эйтмана, Энда.

Методы определения колиформных бактерий:

1) бродильный – берут 333 мл (6 пробах) воды засевают в глюкозопептонную среду, затем заселяют колонии на среду, красят, делают оксидазный тест. Колитиртр объем воды в котором обнаружена 1 кишечная палочка, колииндекс – количество палочек на 1 литр.

2) Мембранных фильтров: через них пропускают воду, выкладывают на среду Энда если они присутствуют, то они берутся→красятся→считаются→окидазный тест→высевают →считают.

Особенности репликации.

Вегетативная репликация: обуславливает передачу информации по вертикали, контролируется хромосомными и плазмидными генами.

Конъюгативная репликации: перенос материала по горизонтали и контролируется только плазмидными генами, при этом происходит достройка нити ДНК комплиментарной нити от донора к реципиенту.

Репаративная репликация: механизм при котором устраняется из ДНК поврежденный участок

Стркуктурно-функциональной едициней является оперон – группа структурных генов связанных с особым геном оператором, он управляет всей группой структурных генов и идет как самостоятельная единица, находится под контролем гена модулятора. В хромосоме гены распределяется друг за другом контролируя разные процессы, но законченный результат можно получить выбирая не последовательно (как игра на пианино).

Хромосомная карта бактерий

Хромосомы бактерий имеют кольцевую форму, гены располагаются линейно, их можно последовательно расположить. Локализация генов определяют в минутах их переноса, и хромосомная карта это 0-100 минут.

Определение локализации гена на хромосоме называется картированием, а их расположение хромосомной картой масштаб которой в минутах. В настоящее время есть карты: кишечной палочки.

Изменчивость бактерий.

Модификационная: адаптивная реакция организмов в ответ на условия внешней среды. Могут изменять морфологические, культуральные, ферментативные свойства.

Генотипическая: затрагивает генотип клетки:

Ø Мутационная – изменение первичной структуры ДНК, могут быть связаны с выпадением нуклеатида, делецией могут носить характер инверсии. Могут быть хромосомные, плазмидные. Могут быть спонтанные, индуцированные. Значение эволционные изменение, сопроваждается селекцией.

Ø Комбинативная: трансформация – передача генетического материала в виде раствора ДНК донора к реципиенту, трансдукция – перенос генетического материала от донора к реципиенту с помощью умеренных фагов (неспецифическая, специфическая), конъюгация – передача генетического материала от донора имеющего F-фактор к реципиенту через половые ворсинки с образованием новых штаммов.

Генная инженерия.

Биотехнология использование биологических объектов (клеток микроорганизмов, грибов, животных, людей) для получения полезных для человека продуктов, которые не могут быть получены другим путем. Основное направление это генная инженерия. Появилась с 1972 когда появилась первая работа по генной инженерии.

Объект генной инженерии: ген или группа генов.

Источники получения: вирусы, прокарилты

Цель: пересадка гена в другие, гетерогенные системы, экспрессия этого гена и т.о. получать полезные продукты (белки, фермены, гормоны, лекарственные препараты и другие БАВ)

Инструмент генной инженерии: ферменты рестриктазы с помощью которых можно получать фрагменты генома. Рестриктазы имеют липкие концы для сшивания различных генов. Если их нет используют лигазы.

Этапы генной инженерии:

  1. выделение гена из клетки с помощью рестриктаз из генома клетки.
  2. присоединение гена к вектору (переносчику) – плазмиду, ДНК, РНК втрусов, умеренные фаги, искусственные плазмиды. Основные требования к вектору – должен выполнять роль саморепликации. Этот этап сопроваждается образованием рекомбинантной ДНК (ген+вектор)
  3. введение рекомбинантной ДНК в гетерогенную систему. В качестве этой системы выступает клетка прокариотов, эукариотов, соматическая.
  4. экспрессия введенного гена, создаются условия что бы рекомбинантная молекула начала самореплицироваться и заставила клетку продуцировать вещество, которое кодирует перенесенный ген.
  5. клонирование гена и выделение продукта, очитка продукта и выхода продукта

С помощью генной инженерии получают инсулин, интерферон, гормон роста, тромболитики, антикоагулянты, антигены (ВИЧ, малярийного плазмодия, бледной трипанемы) используют для создания диагностических систем, вакцины (против HBV, ВИЧ, малярии).

 

тема: Учение об инфекции.

Инфекция (от лат заражение) – совокупность физиологических и патологических реакций, которые возникают и развиваются в макроорганизме при попадании в него патогенных микробов.

Участники процесса: чувствительный макроорганизм, патогенный микроорганизм, внешняя среда (социальные факторы).

Особенности инфекционного процесса:

1. Всегда есть возбудитель

2. Цикличность течения

3. Ответная иммунологическая реакция макроорганизма на поступление возбудителя (образование антител, образование Т-лимфоцитов).

4. Заразность.

Условия развития инфекционного процесса:

1. Попадания в макроорганизм возбудителя в достаточной дозе (инфицирующей дозе) для холеры 109 клеток V. Cholero эта доза содержится в 1 г фекалий. Для дизентерии 102, брюшного тифа 105.

2. Организм должен быть чувствителен. Инкубационный период будет определятся от дозы и скорости размножения.

Входные ворота – место через которое возбудитель попадает в организм. Для многих возбудителей входные вороты определяют тропизм. Для гонококков – слизистая урогенитального тракта. Для гриппа – верхние дыхательные пути он миксотропен (взаимодействует с клетками которые продуцируют муцин). Для гепативо В,С – непосредственно в кровь. Для дизентерии, холеры, брюшного тифа – ротовая полость, слизистая ЖКТ.

Формы инфекционного процесса.

В зависимости от происхождения:

Экзогенная – попадает из вне (вода, воздух, пища).

Эндогенная – вызывается представителями нормальной микрофлоры, условно-патагенной. Могут вызывать заболевание при снижении защитных сил организма.



Поделиться:


Последнее изменение этой страницы: 2021-05-27; просмотров: 78; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.106.232 (0.152 с.)