Металлургические процессы при газовой сварке 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Металлургические процессы при газовой сварке



 

Металлургические процессы при газовой сварке характеризуются следующими особенностями:

малым объемом ванны расплавленного металла;

высокой температурой и концентрацией тепла в месте сварки;

большой скоростью расплавления и остывания металла;

интенсивным перемешиванием металла газовым потоком пламени и присадочной проволокой;

химическим взаимодействием расплавленного металла с газами пламени.

Основными в сварочной ванне являются реакции окисления и восстановления.

Наиболее легко окисляются магний и алюминий, обладающие большим сродством к кислороду.

Окислы этих металлов не восстанавливаются водородом и окисью углерода, поэтому при сварке металлов необходимы специальные флюсы. Окислы железа и никеля, наоборот хорошо восстанавливаются окисью углерода и водородом пламени, поэтому при газовой сварке этих металлов флюсы не нужны.

Водород способен хорошо растворятся в жидком железе. При быстром остывании сварочной ванны он может остаться в шве в виде мелких газовых пузырей. Однако газовая сварка обеспечивает более медленное охлаждение металла по сравнению с дуговой. Поэтому при газовой сварке углеродистой стали, весь водород успевает уйти из металла шва и последний получается плотным.


Структурные изменения в металле при газовой сварке

 

Вследствие более медленного нагрева, зона влияния при газовой сварке больше, чем при дуговой.

Слои основного металла, непосредственно примыкающие к сварочной ванне непрерывны и приобретают крупнозернистую структуру. В непосредственной близости к границе шва находится зона неполного расплавления основного металла с крупной структурой, характерной для не нагретого металла. В этой зоне прочность металла ниже, чем прочность металла шва, поэтому здесь обычно и происходит разрушение сварного соединения.

Далее расположен участок, перекристаллизации, характеризуемый так же крупнозернистой структурой, для которого температура плавления, не выше 1100-1200С. Последующие участки нагреваются до менее высоких температур и имеют мелкозернистую структуру, нормализованной стали.

Для улучшения структуры и свойств металла шва и околошовной зоны иногда применяют горячую проковку шва и местную термообработку нагревом сварочным пламенем или общую термообработку с нагревом в печи.

 

Особенности и режимы сварки различных металлов

Сварка углеродистых сталей

Низкоуглеродистые стали можно сварить любым способом газовой сварки. Пламя горелки должно быть нормальным, мощностью 100-130 дм³/ч при правой сварке.

При сварке углеродистых сталей применяют проволоку из малоуглеродистой стали св-8 св-10 га. При сварке этой проволокой часть углерода, марганца и кремния выгорает, а металл шва получает крупнозернистую структуру и его предел прочности ниже, чем прочность основного металла. Для получения наплавленного металла равнопрочного основному, применяют проволоку св-12 гс, содержащую до 0.17% углерода; 0.8-1.1 марганца и 0.6-0.9% кремния.

 

Сварка легированных сталей

Легированные стали имеют худшую теплопроводность, чем низкоуглеродистая сталь, и поэтому больше коробятся при сварке.

Низколегированные стали (XCHД) хорошо свариваются газовой сваркой. При сварке применяют нормальное пламя и проволоку СВ-0.8, СВ-08А или СВ-10Г2. Хромоникелевые нержавеющие стали сваривают нормальным пламенем мощностью 75 дм³/ч ацетилена на 1 мм толщины металла. Применяют проволоку СВ-02Х10Н9, СВ-06-Х19Н9Т. При сварке жаропрочной нержавеющей стали, применяют проволоку содержащую 21% никеля, 25% хрома. Для сварки коррозинностойкой стали применяют проволоку содержащую молибдена - 3%, 11% никеля и 17% хрома.

 

Сварка чугуна

Чугун сваривают при исправлении дефектов отливок, а также при восстановлении и ремонте деталей: заварке трещин, раковин, при варке отколовшихся частей и пр. Сварочное пламя должно быть нормальным или науглероживающим, так как окислительное вызывает местное выгорание кремния, и в металле шва образуются зерна белого чугуна.

 

Сварка меди

Медь обладает высокой теплопроводностью, поэтому при ее сварке к месту расплавления металла приходится подводить большее количество тепла, чем при сварке стали. Одним из свойств меди затрудняющим сварку, является ее повышенная текучесть в расплавленном состоянии. Поэтому при сварке меди не оставляют зазора между кромками. В качестве присадочного металла используют проволоку из чистой меди. Для раскисления меди и удаления шлака применяют флюсы.

 

Сварка латуни и бронзы

Газовую сварку широко используют для сварки латуни, которая труднее поддается сварке электрической дугой. Основное затруднение при сварке состоит в значительном испарении из латуни цинка, которое начинается при 900°С. Если латунь перегреть, то вследствие испарения цинка, шов получится пористым. При газовой сварке может испарится до 25% содержащегося в латуни цинка. Для уменьшения испарения цинка сварку латуни ведут пламени с избытком кислорода до 30-40%. В качестве присадочного металла используют латунную проволоку. В качестве флюсов применяют прокаленную буру или газообразный флюс БМ-1.

Газовую сварку бронзы применяют при ремонте литых изделий из бронзы, наплавке работающих на трение поверхностей деталей слоем антифрикционных бронзовых сплавов и пр.

Сварочное пламя должно иметь восстановительный характер, так как при окислительном пламени увеличиваются выгорание из бронзы олова, кремния, алюминия. В качестве присадочного материала используют прутки или проволоку, близкие по составу к свариваемому металлу. Для раскисления в присадочную проволоку вводят до 0.4% кремния. Для защиты металла от окисления и удаления окислов в шлаки применяют флюсы тех же составов, что и при сварке меди и латуни.

 

 


Контроль качества

 

Контроль качества сварных швов и соединений проводится согласно ГОСТ 3242-69 с целью выявления наружных, внутренних и сквозных дефектов.

Контроль качества сварных соединений и конструкций складывается из методов контроля, предупреждающих образование дефектов, и методов контроля, выявляющих сами дефекты.

К методам контроля, предупреждающим образование дефектов, относятся: контроль основного и присадочного металлов и других сварочных материалов, контроль подготовки деталей под сварку, а также применяемого оборудования и квалификации сварщиков.

Внешним осмотром проверяется заготовка под сварку (наличие закатов, вмятин, ржавчины), правильность сборки, правильное расположение прихваток, разделка под сварку, величины притупления. Внешним осмотром готового сварного изделия можно выявить наружные дефекты: непровары, наплывы, прожоги, незаваренные кратеры, подрезы, наружные трещины, поверхностные поры, смещение свариваемых элементов. Перед осмотром сварной шов и прилегающую к нему поверхность основного металла на 15-20 мм по обе стороны от шва очищают от металлических брызг, окалины, шлака и других загрязнений.

Осмотр производят невооруженным глазом или лупой с 5-10-кратным увеличением. При внешнем осмотре для выявления дефектов швы замеряют различными измерительными инструментами и шаблонами. Замерами устанавливают правильность выполнения сварных швов и их соответствие ГОСТам, чертежам и техническим условиям. У стыковых швов проверяют ширину и высоту усиления, в угловых и тавровых швах - величину катетов. Границы выявленных трещин засверливают. При нагреве металла до вишнево-красного цвета трещины обнаруживаются в виде темных зигзагообразных линий.

Контроль сварных швов на непроницаемость выполняется после внешнего осмотра. На непроницаемость проверяют швы на изделиях, предназначенных для хранения и транспортировки жидкостей и газов. Контроль на непроницаемость производится керосином, аммиаком, пневматическим и гидравлическим испытаниями, вакуумированием и газоэлектрическими течеискателями.

Испытание керосином производится согласно ГОСТ 3285-65 на металле толщиной до 10 мм. Контроль основан на явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным трубкам. Такими капиллярными трубками в сварных швах являются сквозные поры и трещины. Испытанием керосином можно выявить дефекты размером от 0,1 мм и выше.

Испытание выполняется следующим образом. Вначале осматривают сварной шов, очищают от шлака, окалины и других загрязнений и простукивают молотком. Простукивание молотком способствует лучшему удалению шлака. Доступную для осмотра сторону сварного шва покрывают водным раствором мела или каолина. После высыхания мелового раствора противоположную сторону шва обильно (2-3 раза) смачивают керосином. Дефекты сварных швов выявляют по жирным желтым пятнам на поверхности шва, покрытой мелом или каолином. Продолжительность испытания не менее 4 ч при положительной температуре. Дефектные участки вырубают и после смывания керосина заваривают вновь.

Испытание аммиаком основано на свойстве некоторых индикаторов (спиртоводного раствора фенолфталеина или водного раствора азотнокислой ртути) изменять окраску под действием сжиженного аммиака. Перед началом испытания тщательно очищают сварной шов от шлака, металлических брызг и других загрязнений. После очистки на одну сторону шва укладывают бумажную ленту или светлую ткань, пропитанную 5%-ным раствором азотнокислой ртути, а с другой стороны подают смесь воздуха с аммиаком под давлением. Смесь содержит примерно 1% аммиака. Давление аммиака с воздухом не должно превышать расчетного давления для испытуемой конструкции. Проникающий через поры и трещины аммиак через 1-5 мин окрашивает бумагу или ткань в серебристо-черный цвет. При использовании в качестве индикатора спиртоводного раствора фенолфталеина подвергаемый контролю шов поливают тонкой струей, аммиак проходит сквозь дефекты и окрашивает раствор фенолфталеина в ярко-красный цвет. Выявленные дефекты вырубают и заваривают вновь.

Пневматическое испытание производится согласно ГОСТ 3242-69. Испытанию подвергают емкости и трубопроводы, работающие под давлением. Мелкогабаритные изделия герметизируют заглушками и подают в испытываемый сосуд воздух, азот или инертные газы под давлением, величина которого на 10-20% выше рабочего. Сосуды небольшого объема погружают в ванну с водой, где по выходящим через неплотности в швах пузырькам газа обнаруживают дефектные места.

При испытании крупногабаритных изделий испытуемая конструкция герметизируется, после чего в нее подают газ под давлением, на 10-20% превышающем рабочее давление. Все сварные швы промазывают мыльным раствором, появление пузырей на промазанной поверхности шва служит признаком дефектов.

При испытании под давлением не допускается обстукивание сварных швов. Испытания должны проводиться в изолированных помещениях.

Гидравлическое испытание проводят с целью проверки сварных швов на плотность и прочность. Этому испытанию подвергаются различные емкости, котлы, паропроводы, водопроводы, газопроводы и другие сварные конструкции, работающие под давлением. Перед испытанием сварные изделия герметизируют водонепроницаемыми заглушками. После этого контролируемое сварное изделие наполняют водой с помощью насоса или гидравлического пресса, создавая избыточное контрольное давление в 1,5-2 раза выше рабочего. Величину давления определяют по проверенному и опломбированному манометру. Контролируемое изделие выдерживают под избыточным давлением в течение 5-6 мин, затем давление снижают до рабочего, а околошовную зону на расстоянии 15-20 мм от шва обстукивают легкими ударами молотка с круглым бойком, чтобы не повредить основной металл. Участки шва, в которых обнаружена течь, отмечают мелом и после слива воды вырубают и заваривают вновь, после этого сварное изделие опять подвергается контролю.

В вертикальные резервуары для хранения нефти и нефтепродуктов и другие крупные емкости вода наливается на полную высоту испытуемого сосуда и выдерживается не менее 2 ч. Проницаемость сварных швов и места дефектов определяются просачиванием воды в виде капель.

Вакуумный контроль сварных швов используется тогда, когда применение пневматического или гидравлического контроля почему-либо исключено. Суть метода заключается в создании вакуума и регистрации проникновения воздуха через дефекты на доступной стороне шва. Этот вид контроля применяется при испытании на плотность цистерн, газгольдеров, вертикальных резервуаров и других конструкций. Этот метод производится согласно СН 375-67 и позволяет обнаруживать отдельные поры от 0,004 до 0,005 мм. Производительность этого метода до 60 пог. м. сварных швов в час. Контроль осуществляется вакуумной камерой (рис. 3). Камера устанавливается на проверяемый участок сварного соединения, который предварительно смачивается мыльным раствором. Вакуумным насосом в камере создается разрежение. Величину перепада давления определяют вакуумметром 1. В качестве вакуумных насосов используются вакуум-насосы типа КВН-8 или РВН-20. В результате разности давлений по обеим сторонам сварного шва, атмосферный воздух будет проникать через неплотности 8 сварного соединения 7. В местах расположения непроваров, трещин, газовых пор образуются мыльные пузырьки 6, видимые через прозрачную камеру 3. Неплотности отмечают мелом рядом с камерой. Затем в камеру трехходовым краном 2 впускают атмосферный воздух, камеру снимают и сделанные отметки переносят на сварной шов. Уплотняющим элементом камеры является прокладка 5 из губчатой резины. Рамку 4, в которую вставляется прокладка, изготовляют из стали, алюминия или пластмассы. Величина вакуума - 500…650 мм вод. ст., длительность испытания - 20 с.

 

Рис. 3. Вакуумный контроль шва: 1 - вакуумметр, 2 - резиновое уплотнение, 3 - мыльный раствор, 4 - камера

 


Список литературы

 

1 ГОСТ 3242-79 Соединения сварные. Методы контроля качества

ГОСТ 3285-65 Корпуса металлических судов. Методы испытаний на непроницаемость и герметичность.

СН 375 -67 Инструкция по методам контроля, применяемым при проверке качества сварных соединений стальных строительных конструкций и трубопроводов.

К.С. Орлов Монтаж санитарно-технических, вентиляционных систем и оборудования. М. ИРПО «Академия», 1999.

Темко Ю.П. Монтаж санитарно-технических систем зданий. М., 1962.

Каган В.Н., Щукин В.И. Газовая сварка и резка в строительстве. М., 1963.

Каганов Ш.И. Монтаж внутренних санитарно-технических систем. М., 1969.

Глизманенко Д.А. Газовая сварка и резка металлов.-М.: Высш. школа, 1969.-304 с.

Б.А. Блюменкранц Монтаж вентиляционных систем. М., 1978.

Р.Ф. Афанасьев Вентиляция М., 2007.

В.И. Анурьев Справочник конструктора-машиностроителя. Том3. Москва, «Машиностроение» 1980.



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 53; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.38.130 (0.034 с.)