Кровяное давление. Регуляция кровообращения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кровяное давление. Регуляция кровообращения.



 

1. Виды кровеносных сосудов, особенности их строения и функции.

2. Закономерности движения крови по сосудам.

3. Кровяное давление, его виды.

4. Артериальный пульс, его происхождение, места прощупывания.

5. Регуляция кровообращения.

 

ЦЕЛЬ: Знать виды кровеносных сосудов, особенности их строения и функции, виды кровяного давления, нормативы пульса, артериального давления и пределы их колебаний в норме. Представлять закономерности движения крови по сосудам и механизмы рефлекторной регуляции кровообращения (депрессорный и прессорный рефлексы).

 

1. Кровь заключена в систему трубок, в которых она благодаря работе сердца как «нагнетательного насоса» находится в непрерывном движении. Циркуляция крови является непременным условием обмена веществ.

Кровеносные сосуды делятся на артерии, артериолы, прекапилляры, капилляры, посткапилляры, венулы и вены. Артерии и вены относят к магистральным сосудам, остальные сосуды формируют микроциркуляторное русло.

Артерии - это кровеносные сосуды, несущие кровь от сердца, независимо от того, какая кровь (артериальная или венозная) в них находится. Представляют собой трубки, стенки которых состоят из трех оболочек: наружной соединительнотканной (адвентиции), средней гладкомышечной (медии) и внутренней эндотелиальной (интимы). Самые тонкие артериальные сосуды называются артериолами. Они переходят в прекапилляры, а последние - в капилляры.

Капилляры - это микроскопические сосуды, которые находятся в тканях и соединяют артериолы с венулами (через пре- и посткапилляры). Прекапилляры отходят от артериол, от прекапилляров начинаются истинные капилляры, которые вливаются в посткапилляры. По мере слияния посткапилляров образуются венулы - самые мелкие венозные сосуды. Они вливаются в вены. Диаметр артериол составляет от 30 до 100 мкм, капилляров - от 5 до 30 мкм, венул - 30-50-100 мкм.

Вены - это кровеносные сосуды, несущие кровь к сердцу, независимо от того, какая кровь (артериальная или венозная) в них находится. Стенки вен гораздо тоньше и слабее артериальных, но состоят из тех же трех оболочек. В отличие от артерий многие вены (нижних, верхних конечностей, туловища и шеи) имеют клапаны (полулунные складки внутренней оболочки), препятствующие обратному току крови в них. Не имеют клапанов только обе полые вены, вены головы, почечные, воротная и легочные.

Разветвления артерий и вен могут соединяться между собой соустьями (анастомозами). Сосуды, обеспечивающие окольный ток крови в обход основного пути, называются коллатеральными (окольными).

Функционально различают несколько видов кровеносных сосудов.

1) Магистральные сосуды - наиболее крупные артерии, в которых оказывается небольшое сопротивление кровотоку.

2) Резистивные сосуды (сосуды сопротивления) - мелкие артерии и артериолы, которые могут изменять кровоснабжение тканей и органов,

3) Истинные капилляры (обменные сосуды) - сосуды, стенки которых обладают высокой проницаемостью, благодаря чему происходит обмен веществами между кровью и тканями.

4) Емкостные сосуды - венозные сосуды, вмещающие 70-80% всей крови.

5) Шунтирующие сосуды - артериоло-венулярные анастомозы, обеспечивающие прямую связь между артериолами и венулами в обход капиллярного русла.

 

2. В соответствии с законами гидродинамики движение крови по сосудам определяется двумя силами: разностью давления в начале и конце сосуда и гидравлическим сопротивлением, которое препятствует току крови. Отношение разности давления к сопротивлению определяетобъемную скорость тока жидкости, протекающей по сосудам в единицувремени. Эта зависимость носит название основного гидродинамического закона: количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давления в ее артериальном и венозном концах и чем меньше сопротивление току крови..

Сердце при сокращении растягивает эластические и мышечные элементы стенок магистральных сосудов, в которых накапливается запас энергии сердца, затраченной на их растяжение. Во время диастолы растянутые эластические стенки артерий спадаются и накопленная в них потенциальная энергия сердца движет кровь. Растяжение крупных артерий облегчается благодаря большому сопротивлению, которое оказывают резистивные сосуды. Наибольшее сопротивление току крови наблюдается в артериолах. Поэтому кровь, выбрасываемая сердцем во время систолы, не успевает дойти до мелких кровеносных сосудов. В результате этого создается временный избыток крови в крупных артериальных сосудах. Таким образом, сердце обеспечивает движение крови в артериях и во время систолы, и во время диастолы. Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего тока крови в постоянный. Это важное свойство сосудистой стенки обусловливает сглаживание резких колебаний давления, что способствует бесперебойному снабжению органов и тканей.

Время, за которое частица крови однократно проходит большой и малый круги кровообращения, называется временем кругооборота крови. В норме у человека в покое оно составляет 20-25 с, из этого времени 1/5 (4-5 с) приходится на малый круг и 4/5 (16-20 с) - на большой. При физической работе время кругооборота у человека достигает 10-12 с. Линейная скорость кровотока - это путь, пройденный в единицу времени (в секунду) каждой частицей крови. Линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов. В состоянии покоя линейная скорость кровотока составляет: в аорте - 0,5 м/с, в артериях - 0,25 м/с, в капиллярах - 0,5 мм/с (т.е. в 1000 раз меньше, чем в аорте), в полых венах - 0,2 м/с, в периферических венах среднего калибра - от 6 до 14 см/с.

 

3. Кровяное (артериальное) давление - это давление крови на стенки кровеносных (артериальных) сосудов организма. Измеряется в мм рт.ст. В различных отделах сосудистого русла кровяное давление неодинаково: в артериальной системе оно выше, в венозной - ниже. В аорте кровяное давление составляет 130-140 мм рт.ст., в легочном стволе - 20-30 мм рт.ст., в крупных артериях большого круга - 120-130 мм рт. ст., в мелких артериях и артериолах - 60-70 мм рт.ст., в артериальном и ршозном концах капилляров тела - 30 и 15 мм рт.ст., в мелких венах - 10-20 мм рт.ст., а в крупных венах может быть даже отрицательным, т.е. на 2-5мм рт.ст. ниже атмосферного. Резкое снижение кровяного давления в артериях и капиллярах объясняется большим сопротивлением; поперечное сечение всех капилляров равно 3200 см2, длина около 100000 км, сечение аорты - 8 см2 при длине в несколько сантиметров.

Величина кровяного давления зависит от трех основных факторов:

1) частоты и силы сердечных сокращений;

2) величины периферического сопротивления, т.е. тонуса стенок сосудов, главным образом, артериол и капилляров;

3) объема циркулирующей крови.

Различают систолическое, диастолическое, пульсовое и среднединамическое давление.

Систолическое (максимальное) давление - это давление, отражающее состояние миокарда левого желудочка. Оно составляет 100-130 мм рт.ст. Диастолическое (минимальное) давление - давление, характеризующее степень тонуса артериальных стенок. Равно в среднем 60-80 мм рт.ст. Пульсовое давление - это разность между величинами систолического и диастолического давления, оно необходимо для открытия полулунных клапанов аорты и легочного ствола во время систолы желудочков. Равно 35-55 мм рт.ст. Среднединамическое давление - это сумма минимального и одной трети пульсового давления, выражает энергию непрывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

Величину АД можно измерить двумя методами: прямым и непрямым. При  измерении прямым, или кровавым, методом в центральный конец артерии  вставляют и фиксируют стеклянную канюлю или иглу, которую резиновой трубочкой соединяют с измерительным прибором. Этим способом регистрируют АД во время больших операций, например, на сердце, когда необходим постоянный контроль за давлением. В медицинской практике измеряют АД непрямым, или косвенным (звуковым), методом при помощи тонометра.

На величину АД оказывают влияние различные факторы: возраст, положение тела, время суток, место измерения (правая или левая рука), состояние организма, физические и эмоциональные нагрузки. Нормальными величинами АД следует считать:

максимального - в возрасте 18-90 лет в диапазоне от 90 до 150 мм рт.ст., причем до 45 лет - не более 140 мм рт.ст.;

минимального - в этом же возрасте (18-90 лет) в диапазоне от 50 до 95 мм рт.ст., причем до 50 лет - не более 90 мм рт.ст.

Верхней границей нормального АД в возрасте до 50 лет является давление 140/90 мм рт.ст., в возрасте более 50 лет -150/95 мм рт.ст.

Нижней границей нормального АД в возрасте от 25 до 50 лет является давление 90/55 мм рт.ст., до 25 лет - 90/50 мм рт.ст., свыше 55 лет - 95/60 мм рт.ст.

Для расчета идеального АД у здорового человека любого возраста может быть использована следующая формула:

Систолическое АД = 102 + 0,6 х возраст;

Диастолическое АД = 63 + 0,4 х возраст.

Повышение АД свыше нормальных величин называется гипертензией, понижение - гипотензией.

 

4. Артериальным пульсом называют ритмические колебания артериальной стенки, обусловленные систолическим повышением давления в ней. Пульсация артерий определяется путем легкого прижатия ее к подлежащей кости, чаще всего в области нижней трети предплечья. Пульс характеризуют следующие основные признаки: 1) частота - число ударов в минуту; 2) ритмичность - правильное чередование пульсовых ударов; 3) наполнение - степень изменения объема артерии, устанавливаемая по силе пульсового удара; 4) напряжение - характеризуется силой, которую нужно приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пульсовая волна возникает в аорте в момент изгнания крови из левого желудочка, когда давление в аорте повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим растяжением колебания артериальной стенки распространяются со скоростью 5-7 м/с от аорты до артериол и капилляров, превышая в 10-15 раз линейную скорость движения крови (0,25-0,.5 м/с).

Зарегистрированная на бумажной ленте или фотопленке пульсовая кривая называется сфигмограммой.

Пульс можно прощупать в тех местах, где артерия близко прилежит к кости. Такими местами являются: для лучевой артерии - нижняя треть пепередней

поверхности предплечья, плечевой - медиальная поверхность средней трети плеча, общей сонной - передняя поверхность поперечного отростка VI шейного позвонка, поверхностной височной - височная область, лицевой - угол нижней челюсти кпереди от жевательной мышцы, бедренной - паховая область, для тыльной артерии стопы - тыльная поверхность стопы

 

5. Регуляция кровообращения в организме человека осуществляется двояко: нервной системой и гуморально.

Нервная регуляция кровообращения осуществляется сосудодвигательным центром, симпатическими и парасимпатическими волокнами вегетативной нервной системы. Сосудодвигательный центр - это совокупность нервных образований, расположенных в спинном, продолговатом мозге, гипоталамусе и коре большого мозга. Основной сосудодвигательный центр находится в продолговатом мозге и состоит из двух отделов: прессорного и депрессорного.Раздражение первого вызывает сужение артерий и подъем АД, а раздражение второго - расширение артерий и падение АД. Тонус сосудодвигательного центра продолговатого мозга зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон. Рефлексогенными зонами называются участки сосудистой стенки, содержащие наибольшее количество рецепторов. В этих зонах содержатся следующие рецепторы: 1) механорецепторы (баро-, или прессорецепторы - греч. baros - тяжесть; лат. pressus - давление), воспринимающие колебания давления крови в сосудах в пределах 1-2 мм рт.ст.; 2) хеморецепторы, воспринимающие изменения химического состава крови (СО2,02, СО и др.); 3) волюмрецепторы (франц. volume - объем), воспринимающие изменение объема крови; 4) осморецепторы (греч. osmos - толчок, проталкивание, давление),воспринимающие изменение осмотического давления крови. К числу наиболее важных рефлексогенных зон относятся: 1) аортальная зона (дуга аорты); 2) синокаротидная зона (общая сонная артерия в месте ее бифуркации, т.е. разделения на наружную и внутреннююю сонные артерии); 3) само сердце;4) устье полых вен; 5) область сосудов малого круга кровообращения.

Гуморальные вещества, оказывающие влияние на тонус сосудов, делят на сосудосуживающие (оказывают общее воздействие) и сосудорасширяющие (местное).

К сосудосуживающим веществам относятся:

1) адреналин - гормон мозгового слоя надпочечников;

2) норадреналин - медиатор симпатических нервов и гормон надпочечников;

3) вазопрессин - гормон задней доли гипофиза;

4) ангиотензин II (гипертензин);

5) серотонин - биологически активное вещество, образуемое в слизистой оболочке кишечника, мозге, тромбоцитах, соединительной ткани.

К сосудорасширяющим веществам относятся:

1) гистамин - биологически активное вещество, образующееся в стенке желудочно-кишечного тракта и других органах;

2) ацетилхолин - медиатор парасимпатических и других нервов;                         3) тканевые гормоны: кинины, простагландины и др.;

4) молочная кислота, углекислый газ, ионы калия, магния и т.д.

5) натрийуретический гормон (атриопептид, аурикулин), вырабатываемый кардиомиоцитами предсердий. Обладает широким спектром физиологической активности. Он подавляет секрецию ренина, ингибирует эффект ангиотензина II, альдостерона, расслабляет гладкие мышечные клетки сосудов, способствуя тем самым снижению АД.

ЛЕКЦИЯ №18.

ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ ОРГАНОВ ИММУННОЙ СИСТЕМЫ.

 

1. Общая характеристика органов иммунной системы.

2. Центральные и периферические органы иммунной системы их функции.

3. Основные закономерности строения и развития органов иммунной системы.

 

ЦЕЛЬ: Знать общую характеристику иммунной системы, топографию органов иммунной системы в теле человека, функции центральных и периферических органов иммунной системы. Представлять основные закономерности строения и развития органов иммунной системы.

 

1. Иммунная система - это совокупность лимфоидных тканей и органов тела, обеспечивающая защиту организма от генетически чужеродных клеток или веществ, поступающих извне или образующихся в организме. Органы иммунной системы, содержащие лимфоидную ткань, выполняют функцию охраны постоянства внутренней среды (гомеостаза) в течение всей жизни индивидуума. Они вырабатывают иммунокомпетентные клетки, в первую очередь лимфоциты, а также плазматические клетки, включают их в иммунный процесс, обеспечивают распознавание и уничтожение проникших в организм или образовавшихся в нем клеток и других посторонних веществ, несущих на себе признаки генетически чужеродной информации. Генетический контроль осуществляют функционирующие совместно популяции Т- и В-лимфоцитов, которые при участии макрофагов обеспечивают иммунный ответ в организме.

Иммунная система имеет 3 морфофункциональные особенности: 1) она генерализована по всему телу; 2) ее клетки постоянно циркулируют через кровоток; 3) она обладает уникальной способностью вырабатывать специфические антитела в отношении каждого антигена.

К иммунной системе относят органы, имеющие лимфоидную ткань. В лимфоидной ткани выделяют 2 компонента: 1) строму - ретикулярную опорную соединительную ткань, состоящую из ретикулярных клеток и ретикулярных волокон; 2) клетки лимфоидного ряда: лимфоциты различной степени зрелости, плазмоциты, макрофаги и др.

К органам иммунной системы принадлежат: костный мозг, в котором лимфоидная ткань тесно связана с кроветворной, тимус (вилочковая железа), лимфатические узлы, селезенка, скопления лимфоидной ткани в стенках полых органов пищеварительной, дыхательной систем и мочевыводящих путей (миндалины, групповые лимфоидные бляшки, одиночные лимфоидные узелки). Эти органы называют лимфоидными органами иммуногенеза.

 

2. Функционально органы иммунной системы подразделяют на центральные и периферические.

К центральным органам иммунной системы относятся костный мозг и тимус. В костном мозге из полипотентных стволовых клеток образуются В-лимфоциты (бурсозависимые) и предшественники Т-лимфоцитов (наряду с другими клетками крови). В тимусе происходит дифференцировка Т-лимфоцитов (тимусзависимых), образующихся из поступивших в этот орган предшественников Т-лимфоцитов - претимоцитов. В дальщейшем обе эти популяции лимфоцитов с током крови поступают в периферические органы иммунной системы, которые непосредственно осуществляют поиск чужеродного. Большинство из имеющихся в организме лимфоцитов являются рециркулирующими (многократно циркулирующими) между различными средами обитания: органы иммунной системы, где эти клетки образуются, лимфатические сосуды, кровь, снова органы иммунной системы и т.д. При этом считают, что в костный мозг и тимус лимфоциты повторно не попадают.

К периферическим органам иммунной системы относятся:

1) миндалины кольца Н.И. Пирогова-В. Вальдейера; 2) многочисленные лимфоидные узелки в стенках полых органов дыхательной (гортани, трахеи, бронхов), пищеварительной (пищевода, желудка, тонкой и толстой кишки, аппендикса, желчного пузыря), мочевой (мочеточника, мочевого пузыря, мочеиспускательного канала) систем; 3) лимфоидные узелки большого сальника («иммунной фабрики брюшной полости»), матки; 4) соматические (париетальные), внутренностные (висцеральные) и смешанные лимфатические узлы, вставленные по току лимфы в количестве от 500 до 1000 (биологические фильтры); 5) селезенка - единственный орган, контролирующий генетическую «чистоту» крови; 6) многочисленные лимфоциты, которые находятся в крови, лимфе, тканях и осуществляют поиск чужеродных веществ.

Костный мозг является одновременно органом кроветворения и центральным органом иммунной системы. Общая масса костного мозга у взрослого человека 2,5-3 кг (4,5-4,7% массы тела). Около половины его составляет красный костный мозг, остальное - желтый.

Красный костный мозг располагается в ячейках губчатого вещества плоских и коротких костей, эпифизов длинных (трубчатых) костей. Он состоит, из стромы (ретикулярной ткани), гемопоэтических (миелоидной ткани) и лимфоидных (лимфоидной ткани) элементов на разных стадиях развития. В нем содержатся стволовые клетки - предшественники всех клеток крови и лимфоцитов. Количество лимфоцитов, работающих на нашу защиту, составляет шесть триллионов (6*1012 клеток), из этого числа лимфоцитов, масса которых в теле взрослого человека равна в среднем 1500 г, на долю крови (без кроветворных и иммунных органов) приходится лишь 0,2% (3 г), что составляет примерно двенадцать миллиардов (12*109) клеток. Остальные лимфоциты находятся в лимфоидной ткани органов иммунной системы (100 г), в красном костном мозге (100 г) и в других тканях, включая лимфу (1300 г). В 1 мм3 лимфы грудного протока находится от 2000 до 20000 лимфоцитов. В 1 мм3 периферической лимфы (до прохождения ее через лимфатические узлы) содержится в среднем 200 клеток.

У новорожденного общая масса лимфоцитов составляет примерно 150 г; 0,3% ее приходится на кровь. Затем количество лимфоцитов быстро нарастает, у ребенка от 6 месяцев до 6 лет их масса уже равна 650 г. К 15 годам она увеличивается до 1250 г. В течение всего этого времени на долю лимфоцитов крови приходится 0,2% всей массы этих клеток иммунной системы.

Лимфоциты - это подвижные округлые клетки, размеры которых варьируют в пределах от 8 до 18 мкм. Большинство циркулирующих лимфоцитов - это малые лимфоциты диаметром около 8 мкм. Примерно 10% составляют средние лимфоциты диаметром 12 мкм. Большие лимфоциты (лимфобласты) диаметром около 18 мкм встречаются в центрах размножения лимфатических узлов и селезенки. В норме они в крови и лимфе не циркулируют. Именно малый лимфоцит является основной иммунокомпетентной клеткой. Средний лимфоцит представляет собой начальную стадию дифференцировки В-лимфоцита в плазматическую клетку.

Среди лимфотитов различают 3 группы: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсозависимые) и нулевые.

1) Т-лимфоциты возникают в костном мозге из стволовых клеток,которые дифференцируются вначале в претимоциты. Последние с током крови переносятся в вилочковую железу (тимус), в которой они созревают и превращаются в Т-лимфоциты, а затем, минуя костный мозг, расселяются в лимфатических узлах, селезенке или циркулируют в крови, где на их долю приходится 50-70% всех лимфоцитов. Различают несколько форм (популяций) Т-лимфоцитов, каждая из которых выполняет определенную функцию. Одна из них - Т-хелперы (помощники) взаимодействуют с В-лимфоцитами, превращая их в плазматические клетки, вырабатывающие антитела. Другая - Т-супрессоры (угнетатели) блокируют чрезмерные реакции и активность В-лимфоцитов. Третьи - Т-киллеры (убийцы) непосредственно осуществляют реакции клеточного иммунитета. Они взаимодействуют с чужеродными клетками и уничтожают их. Таким способом Т-киллеры разрушают опухолевые клетки, клетки чужеродных трансплантатов, клетки-мутанты, что сохраняет генетический гомеостаз.

2) В-лимфоциты развиваются из стволовых клеток в самом костном мозге, который рассматривается в качестве аналога фабрициевой сумки (бурсы) - клеточного скопления в стенке клоачного отдела кишки у птиц. Из костного мозга В-лимфоциты поступают в кровь, где на их долю приходится 20-30% циркулирующих лимфоцитов. Затем с кровью они заселяют бурсозависимые зоны периферических органов иммунной системы (селезенку, лимфатические узлы, лимфоидные узелки стенок полых органов пищеварительной, дыхательной и других систем), где из них дифференцируются эффекторные клетки - В-лимфоциты памяти и антителообразукадие клетки - плазмоциты, которые синтезируют иммуноглобулины пяти разных классов: IgA, IgG, IgM, IgE, IgD. Основная функция В-лимфоцитов - создание гуморального иммунитета путем выработки антител, которые поступают в жидкости организма: слюну, слезы,кровь, лимфу, мочу и т.д. Антитела связываются с антигенами, что дает возможность фагоцитам поглощать их.

3) Нулевые лимфоциты не проходят дифференцировки в органах иммунной системы, но при необходимости способны превращаться в В- и Т-лимфоциты. На их долю приходится 10-20% лимфоцитов крови.

 

3. В строении и развитии в онтогенезе органов иммунной системы выделяют 3 группы закономерностей. Одни из них характерны для всех органов иммунной системы, другие - только для центральных органов, третьи - только для периферических органов иммунной системы.

Общие закономерности для всех органов иммунной системы.

1) Рабочей тканью (паренхимой) органов иммунной системы является лимфоидная ткань.

2) Все органы иммунной системы рано закладываются в эмбриогенезе: костный мозг и тимус начинают закладываться на 4-5 неделе эмбриогенеза, лимфатические узлы и селезенка - на 5-6 неделе, небные и глоточные миндалины - на 9-14 неделе, лимфоидные узелки аппендикса и лимфоидные бляшки тонкой кишки - на 14-16 неделе, одиночные лимфоидные узелки в слизистой оболочке внутренних полых органов - на 16-18 неделе.

3) Органы иммунной системы к моменту рождения морфологически сформированы, функционально зрелы и готовы выполнять функции иммунной защиты. Так, красный костный мозг, содержащий стволовые клетки, миелоидную и лимфоидную ткани, к моменту рождения заполняет все костномозговые полости. Тимус у новорожденного имеет такую же относительную массу, как у детей и подростков, и составляет 0,3% массы тела. Во многих периферических органах иммунной системы (небные миндалины, аппендикс, тонкий, толстый кишечник) у новорожденного уже имеются лимфоидные узелки, в том числе и с центрами размножения, что свидетельствует о полной морфологической и функциональной зрелости лимфоидной ткани в органах иммунной системы.

4) Органы иммунной системы достигают своего максимального развития (масса, размеры, число лимфоидных узелков, наличие в них центров размножения) в детском и подростковом возрастах. Все лимфоидные органы достигают пика своего развития к 16 годам, а лимфоидные узелки в органах иммуногенеза - к 4-6 годам (поэтому «профилактическое» удаление небных миндалин и аппендиксов в 1960 гг. у детей в некоторых странах приводило через несколько лет после операции к появлению опухолей органов в соответствующих областях).

5) Во всех органах иммунной системы наблюдается ранняя возрастная инволюция (обратное развитие) лимфоидной ткани и ее замещение жировой и волокнистой соединительной тканью. К 20-25 годам все лимфоидные органы становятся такими же, как у 50-60-летних людей. Около половины красного костного мозга, начиная с 10-15 лет, постепенно превращается в ожиревший, недеятельный желтый костный мозг. Аналогично с 10-15 лет начинает уменьшаться количество лимфоидной ткани в тимусе с заменой ее на жировую ткань. Последняя в 50-летнем возрасте составляет 88-89% массы тимуса, а у новорожденных - лишь 7%. У детей и подростков наблюдается прогрессирующее уменыпение количества лимфоидных узелков и в периферических органах иммунной системы. При этом сами узелки становятся мельче, в них исчезают центры размножения. Из-за разрастания соединительной ткани наиболее мелкие лимфатические узлы становятся непроходимыми для лимфы и выключаются из лимфатического русла. К 60 годам в аппендиксе лимфоидной ткани остается очень мало, он заполняется жиром (из 600-800 лимфоидных узелков у детей и подростков число их уменьшается до 100-150). Все вышесказанное в совокупности приводит к снижению защитных сил организма, о чем свидетельствует рост числа опухолевых и других заболеваний у людей пожилого возраста. В то же время по мере уменьшения общей массы лимфоидной ткани в организме происходят качественные компенсаторные сдвиги в органах иммунной системы, обеспечивающие у большинства людей иммунную защиту на достаточно высоком уровне.

Закономерности (особенности) центральных органов иммунной системы.

1) Центральные органы иммунной системы расположены в хорошо защищенных от внешних воздействий местах (костный мозг находится в костномозговых полостях, тимус - в грудной полости позади широкой и прочной грудины).

2) Костный мозг, и тимус являются местом дифференцировки лимфоцитов из стволовых клеток. В костном мозге из полипотентных стволовых клеток путем сложной дифференцировки образуются В-лимфоциты и претимоциты (предшественники Т-лимфоцитов), а в тимусе из поступивших из костного мозга туда с кровью претимоцитов образуются Т-лимфоциты (тимоциты).

3) Лимфоидная ткань в центральных органах иммунной системы находится в своеобразной среде микроокружения и симбиозе с другими тканями. В костном мозге такой средой является миелоидная ткань, в тимусе - эпителиальная ткань

Закономерности для периферических органов иммунной системы.

1) Все периферические органы иммунной системы располагаются на путях возможного внедрения в организм чужеродных веществ или на путях их следования в организме. Они формируют здесь своеобразные пограничные, охранные зоны: «сторожевые посты», «фильтры», содержащие лимфоидную ткань. Так, миндалины образуют лимфоидное кольцо Н.И.Пирогова - В. Вальдейера у входа в пищеварительную систему и дыхательные пути. Лимфоидные узелки, лимфоидные бляшки, а также диффузная лимфоидная ткань в слизистой оболочке органов пищеварения, дыхания и мочевыводящих путей находятся под эпителиальным покровом этих органов на границе с внешней средой (пищевые массы, воздух с содержащимися в нем микробами, пылевыми частицами, моча). Лимфатические узлы, являясь биологическими фильтрами, лежат на путях тока лимфа от органов и тканей в направлении нижних отделов шеи, где лимфа вливается в венозную систему. Селезенка (единственный орган, осуществляющий иммунный контроль крови) находится на путях тока крови из аорты по селезеночной артерии в систему воротной вены. Кроме указанных органов иммуногенеза, многочисленные лимфоциты, находящиеся в крови, лимфе, органах и тканях, выполняют функции поиска, нахождения, распознавания и уничтожения генетически чужеродных веществ, попавших в организм или образовавшихся в нем самом (частицы погибших клеток, клетки- мутанты, опухолевые клетки, микроорганизмы).

2) Лимфоидная ткань периферических органов иммунной системы в зависимости от величины и продолжительности антигенного воздействия усложняет свое строение и проходит 4 этапа (стадии) дифференцировки.

Первым этапом (диффузная лимфоидная ткань) следует считать появление в слизистой оболочке полых внутренних органов и в других анатомических образованиях (своего рода антигеноопасных местах) диффузно рассеянной лимфоидной ткани. Это находящиеся в собственной пластинке слизистой оболочки под эпителиальным покровом лимфоциты, образующие несколько рядов клеток. Там же встречаются плазматические клетки и макрофаги. Присутствие в слизистой оболочке клеток лимфоидного ряда можно рассматривать как готовность организма встретить, распознать и обезвредить чужеродные вещества (антигены), которые находятся во внешней среде (в пищеварительном канале, дыхательных и мочевыводящих путях).

Вторым этапом (формирование предузелка) развития периферических органов иммунной системы является образование скоплений клеток лимфоидного ряда. В слизистой оболочке полых внутренних органор и других областях тела человека (в плевре, брюшине, возле мелких кровеносных сосудов, в толще экзокринных желез и др.) на месте диффузно рассеянных клеток лимфоидного ряда лимфоциты собираются в небольшие клеточные скопления. В центре этих скоплений клетки расположены плотнее, чем на периферии.

Третьим этапом (формирование узелка) развития лимфоидной ткани в периферических органах иммунной системы является образование лимфоидных узелков - плотных скоплений клеток лимфоидного ряда округлой или овальной формы. Наличие в лимфоидной ткани таких лимфоидных узелков с довольно четкими контурами рассматривается как состояние высокой морфологической зрелости органов иммунной системы, как их готовность образовывать центры размножения для местного воспроизводства клеток лимфоидного ряда. Лимфоидные узелки появляются незадолго перед рожением или вскоре после рождения.

Четвертым завершающим этапом (налаживание собственного производства лимфоцитов) развития лимфоидной ткани, наиболее высокой степенью дифференцировки органов иммунной системы следует считать появление в лимфоидных узелках центров размножения (герминтативных, светлых центров). Такие центры возникают в узелках при длительном воздействии антигенных раздражителей и свидетельствуют, с одной стороны, о влиянии на организм сильных и разнообразных факторов внешней среды, с другой - о большой активности защитных сил организма. Интенсивное появление центров размножения в лимфоидных узелках наблюдается у детей, начиная с грудного возраста. Так, у детей 1-3 лет более 70% лимфоидных узелков в стенках тонкой кишки имеют центры размножения. Для лимфоидной ткани органов иммунной системы свойственно наличие лимфоидных узелков, как без центра размножения, так и с таким центром. Лимфоидные узелки без центра размножения - первичные, так как они образуются непосредственно в диффузной лимфоидной ткани. Лимфоидные узелки с центром размножения - вторичные, поскольку центр размножения появляется как бы вторично, т.е. после образования самого узелка. Центры размножения, являющиеся одним из мест образования лимфоцитов, содержат в значительном количестве лимфобласты, лимфощиты, а также митотические делящиеся клетки. Начиная с 8-18 лет число и размеры лимфоидных узелков постепенно уменьшаются, исчезают центры размножения. После 40-60 лет на месте лимфоидных узелков остается диффузная лимфоидная ткань, которая по меpe увеличения возраста человека в большей своей части замещается жировой тканью.

 

ЛЕКЦИЯ №19.



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 63; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.67.177 (0.059 с.)