Полимерные материалы на основе термопластичных матриц 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Полимерные материалы на основе термопластичных матриц



 

При создании полимерных композиционных материалов одной из важных задач является выбор или разработка полимерной матрицы (связующего), которая должна обеспечивать достижение максимальных прочностных характеристик композита и удовлетворять определенным технологическим и эксплуатационным требованиям.

Матрица должна обладать достаточной жесткостью и обеспечивать совместную работу армирующих волокон; ее прочность является определяющей при нагружении, не совпадающем по направлению с ориентации волокон. Особенно важным является свойство матрицы образовывать монолитный материал, в котором матрица сохраняет свою целостность вплоть до разрушения волокон. Таким образом, выбор связующего для композита - сложная задача, правильное решение которой способствует созданию материала с эффективными технологическими и эксплуатационными свойствами.

В качестве матричных материалов полимерных композитов используют термореактивные и термопластичные связующие.

Термореактивные связующие - низковязкие, легкорастворимые продукты (смолы), способные отверждаться при нагреве под действием отвердителей, катализаторов с образованием после отверждения необратимой сетчатой структуры (нерастворимой и неплавкой).

Термопластичные связующие - высокомолекулярные линейные полимеры (волокна, пленки, порошки), которые при нагревании расплавляются, а при последующем охлаждении затвердевают и их состояние после отверждения обратимо.

Наиболее распространены термопласты на основе карбоцепных полимеров - полиэтилена высокой и низкой плотности (ПЭВП, ПЭНП), полипропилена (ПП), поливинилхлорида (ПВХ), полистирола, полиакрилатов и др. Они доступны, дешевы, но имеют невысокие термические характеристики. Особое место среди карбоцепных полимеров занимают фторопласты (фторполимеры и сополимеры), имеющие высокую температуру плавления, термостойкость, негорючесть, антифрикционные свойства.

Широко используются термопластичные гетероцепные полимеры: полиамиды (ПА) и сополиамиды (поликапроамид - капрон и найлон 6, полигексаметиленадипамид - анид и найлон 66, полиамиды 68, 10, 610, 12, 612 и др.), а также сложные полиэфиры (полиэтилентерефталат) и линейные полиуретаны, которые обладают более высоким комплексом функциональных свойств, но сложнее в переработке и дороже. Большинство термопластов являются материалами с умеренными термическими характеристиками. В термопласты часто вводятся различные добавки: минеральные порошкообразные наполнители, короткорезаные волокна и др.

В состав термостойких термопластов входят различные ароматические полимеры: поликарбонаты, ароматические полиамиды (полиметафениленизофталамид), ароматические полиэфиры, полисульфоны, полифениленоксиды, ароматические поликетоны и некоторые другие. Они обладают высокой тепло- и термостойкостью, устойчивы к эксплуатационным воздействиям, однако сравнительно дороги и в ряде случаев трудно перерабатываются.

К конструкторским преимуществам композитов на основе термопластичных связующих относят надежность изделий из них, достигаемую прежде всего вследствие низкого уровня остаточных напряжений, релаксирующих в термопластичной матрице в первые часы после формования изделий и отсутствием необходимости в длительном и энергоемком процессе полимеризации.

В связи с этим использование термопластичных связующих может привести к значительному снижению стоимости изделий из композитов. По уровню механических характеристик, некоторые термопласты не уступают отвержденным термореактивным связующим, а по таким свойствам, как химическая стойкость и герметичность, как правило, превосходят их.
 К недостаткам рассматриваемых связующих относятся ярко выраженная зависимость свойств композитов на их основе от температуры, низкая теплостойкость термопластов (исключение составляют специальные теплостойкие материалы) и технологические трудности, связанные с высокой вязкостью их растворов и расплавов. Поэтому для качественной пропитки систем армирующих элементов требуется высокое давление, приводящее к разрушению арматуры.

Матричные термопластичные волокна наиболее результативны при совмещении компонентов. Их использование позволяет создавать композиты с заданной регулярностью структуры, надежной фиксацией схемы армирования на всех стадиях переработки. Изделия на основе таких волокон можно изготавливать различными технологическими методами - выкладкой, намоткой, а совмещение волокон с армирующими компонентами достигается при ткачестве, плетении. Среди термопластичных связующих особое место занимают связующие нового типа, называемые роливсанами, которые дают возможность сочетать высокую теплостойкость композита и легкую перерабатываемость связующего. Роливсаны предназначены для получения композитов и изделий из них с широким диапазоном температур эксплуатации (270…620 К). Основным преимуществом роливсанов перед другими связующими является сочетание жидкого состояния малотоксичной исходной композиции, незначительного выделения побочных летучих продуктов при ее отверждении с высокой теплостойкостью и прочностью как самой матрицы, так и композитов на ее основе.

Все виды матриц (связующих) имеют свои особенности применения. Фенольные и близкие к ним смолы постепенно выделяют вредные компоненты, особенно при повышенных температурах, поэтому, как правило, их не рекомендуется использовать для изделий бытового назначения. Для таких изделий целесообразнее использовать меламиновые смолы, поскольку они не образуют заметных количеств вредных выделений. Полиэфирные смолы также малотоксичны в отвержденном состоянии, но обладают наиболее низкими механическими и термическими свойствами.

Наибольшая прочность и высокая адгезия к армирующим волокнам среди реактопластов присуща эпоксидным смолам, поэтому их предпочтительно использовать для изготовления более нагруженных изделий. Они также достаточно термостойки. При модификации этих смол фенольными связующими их показатели заметно улучшаются. Однако эпоксидные смолы относятся к весьма дорогим среди указанных реактопластов. Кроме того, они могут выделять в небольших количествах токсичные вещества.

Однако их широко используют в строительстве, судостроении, радиоэлектронике, производстве бытовых предметов, спортивного инвентаря, оконных рам для современных стеклопакетов и т.п.

 

 


Заключение

 

Свойства стали и сплавов зависят от их химического состава, состояния и структуры. Поскольку кардинальное изменение указанных свойств в полезном направлении достигается лишь в результате введения в сталь значительных количеств легирующих элементов, для стали с особыми свойствами, как правило, характерно высокое содержание легирующих элементов. Сталь и сплавы с особыми свойствами находят широкое применение в машиностроении, приборостроении, химической и электротехнической промышленности и играют важную роль в современной технике.

При создании полимерных композиционных материалов одной из важных задач является выбор или разработка полимерной матрицы (связующего). Все виды матриц имеют свои особенности применения. Поэтому разработка новых методов исследования строения (структуры) и физико-механических свойств материалов способствует дальнейшему развитию производства, позволяет определить области рациональною использования различных материалов с учетом экономических требований.

 

 


Список литературы.

 

1. Бортников В.Г. Основы технологии переработки пластических масс. - Л.: Химия, 1983.

. Геллер Ю.А., Рахштадт А.Г. Материаловедение. - М.: Металлургия, 1975.

3. Гуляев А.П. Металловедение. - 6-е изд. - М: Металлургия, 1986.

. Кузьмин Б.А. Технология металлов и конструкционные материалы. изд.-машиностроение, 1981.



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 54; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.195.204 (0.007 с.)