Понятия симметрии и асимметрии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятия симметрии и асимметрии



Симметрия (др. греч. συμμετριαι - «соразмерность») в биологии - закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

Асимметрия - (греч. α- «без» и «симметрия») - отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии - вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии альтернативны. Чем более симметричен организм, тем менее он асимметричен и наоборот. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, радиальную или билатеральную. Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листья растений при сложении пополам в точности не совпадают.

Среди элементов симметрии различают следующие:

· плоскость симметрии - плоскость, делящая объект на две равные (зеркально симметричные) половины;

·   ось симметрии - прямая линия, при повороте вокруг которой на некоторых угол, меньший 360о, объект совпадает сам с собой;

·   центр симметрии - точка. делящая пополам все прямые линии, соединяющие подобные точки объекта.

Обычно через центр симметрии проходят оси симметрии, а через ось симметрии - плоскости симметрии. однако существуют тела и фигуры, у которых при наличии центра симметрии нет ни осей, ни плоскостей симметрии, а при наличии оси симметрии отсутствуют плоскости симметрии (см. ниже).

Кроме этих геометрических элементов симметрии, различают биологические:

· антимеры - симметрично повторяющиеся вокруг главной оси;

·   радиус - плоскость симметрия антимера;

·   интеррадиус - плоскость, проходящая между соседними антимерами;

·   метамеры - повторяющиеся участки, расположенные вдоль продольной оси тела организма.

У биологических объектов встречаются следующие типы симметрии:

· сферическая симметрия - симметричность относительно вращений в трёхмерном пространстве на произвольные углы.

·   аксиальная симметрия (радиальная симметрия, симметрия вращения неопределённого порядка) - симметричность относительно поворотов на произвольный угол вокруг какой-либо оси.

·   двусторонняя (билатеральная) симметрия - симметричность относительно плоскости симметрии (симметрия зеркального отражения).

·   трансляционная симметрия - симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние (её частный случай у животных - метамерия).

·   триаксиальная асимметрия - отсутствие симметрии по всем трём пространственным осям (Заренков, 2009)

Флуктуирующая асимметрия

Флуктуирующая асимметрия крайне широко распространенное явление.

Им охвачены практически все билатеральные структуры у самых разных живых существ. Понятно, что невозможно подвергнуть анализу известные признаки всех билатерально - симметричных структур, но у исследованных флуктуирующая асимметрия регистрировалась (Захаров, 1987). Более того, это явление имеет место даже при иных типах асимметрии, в этом случае она представляет собой отклонения не от строгой симметрии, а от определенной средней симметрии.

Явление симметрии в природе, как вид согласованности отдельных частей, который объединяет их в единое целое - одно из наиболее общих явлений, свойственное неживой и живой материи на разных уровнях организации.

Флуктуирующая асимметрия - этот тип асимметрии есть следствие несовершенства онтогенетических процессов. Это незначительные, ненаправленные отклонения от строгой билатеральной симметрии.

Флуктуирующая асимметрия крайне широко распространенное явление.

Им охвачены практически все билатеральные структуры у самых разных живых существ. Понятно, что невозможно подвергнуть анализу известные признаки всех билатерально - симметричных структур, но у исследованных флуктуирующая асимметрия регистрировалась. Более того, это явление имеет место даже при иных типах асимметрии, в этом случае она представляет собой отклонения не от строгой симметрии, а от определенной средней симметрии. По форме выражения она представляет собой незначительные отклонения от строгой билатеральной симметрии, а наблюдаемые отклонения, скорее могут быть отнесены к случайным нарушениям развития, чем к направленным изменениям. Соответственно, эти незначительные отклонения не несут функциональной значимости, и находятся в пределах определенного люфта, допускаемого естественным отбором. Флуктуирующая асимметрия есть проявление внутрииндивидуальной изменчивости, т.е. характеризует различия между гомологичными структурами внутри одного индивида. Подобный тип изменчивости широко распространен у растений, где в пределах одного индивида, можно провести разносторонний анализ метамерных структур, например листьев (они наиболее часто используются для этих целей). Но важно отметить, что если уровень флуктуирующей асимметрии является характеристикой индивидуума, а значит, можно оценивать различие разных групп особей по среднему уровню различий между сторонами, то данное явление (флуктуирующая асимметрия) может рассматриваться и с позиции надындивидуальной (популяционной) изменчивости. Рассматривая основные черты флуктуирующей асимметрии, можно выделить три основные особенности (по различиям между двумя сторонами тела):

. Незначительность - определяется природой этого явления (случайная изменчивость развития), а значит, если эти различия случайны, то они должны быть незначительны. Возникающие существенные различия между сторонами, обычно элиминируются отбором. Если этого не происходит, а появление этих различий постоянно, то можно говорить об их адаптивном характере, и они не могут быть случайны.

. Ненаправленность - также следствие причин, описанных в предыдущем абзаце. Эта черта свидетельствует о взаимогашении случайных разнонаправленных различий между сторонами у отдельных особей.

. Независимость проявления - исходя из случайности нарушений развития признака, зависимость в появлении различий слева или справа должна отсутствовать. Это неизменно имеет место, если все фенотипическое разнообразие в рассматриваемой группе особей является следствием случайных нарушений развития, в достаточно однородных, с точки зрения генотипа и среды, условиях.

Анализ таких гетерогенных группировок, как природные популяции, выявил наличие всех переходов от сильной положительной связи между сторонами до ее полного отсутствия или слабой отрицательной, что является вполне естественным при флуктуирующей асимметрии, так как в общее фенотипическое разнообразие исследуемых признаков происходит вклад других форм изменчивости. Преимущество подхода состоит в том, что при этом известна заданная норма, т.е. то, что должно быть при отсутствии воздействий.

Важной характеристикой данного метода, подчеркивающей его универсальность, является возможность его использования в отношении представителей разных групп живых существ. Особенно подкупает простота методики замеров и расчётов флуктуирующей асимметрии. Среди всех биоиндикаторов растения наиболее удобны, т.к. они - основные продуценты, находятся на границе двух сред - почвы и воздуха, ведут прикрепленный образ жизни, доступны и удобны в сборе материала. Для биоиндикационной характеристики больших территорий лучше использовать древесные растения, так как травянистые растения в большей степени отражают микробиотопические условия (Заренков, 2009).

 

Влияние различных факторов на уровень флуктуирующей асимметрии

В эксперименте, при разных типах скрещиваний выявлено, что при близкородственном скрещивании и при отдаленной гибридизации величина флуктуирующей асимметрии возрастает. Если при инбридинге это следствие перехода многих локусов (локус - фиксированное положение на хромосоме) в гомозиготное состояние, то при скрещивании разных форм, имеют значение межгенные взаимодействия. Также нарушение общей коадаптированности генома отмечено при накоплении генетических дефектов при таких заболеваниях человека, как заячья губа, волчья пасть, синдром Дауна. Анализ разных генетически детерминированных морф, в природной популяции показал их равноценность по уровню флуктуирующей асимметрии, за исключением тех случаев, когда морфа имеет гибридное происхождение, что также вызывает нарушение коадаптированности геном. Выяснение влияния уровня гетерозиготности популяции на уровень флуктуирующей асимметрии показало, что определяющей оказывается не гетерозиготность как таковая по всем локусам, а по тем из них, которые связаны с какой-либо характеристикой (например, быстрым и медленным ростом) опосредованно влияющей на асимметричность.

Зависимость рассматриваемого показателя от средовых воздействий, говорит о том, что забуференность развития действительна лишь в определенном диапазоне условий и оказывается менее действенной в необычных условиях среды. В серии работ, выполненных на растениях, было показано, что если общая стабильность развития контролируется генотипом, то сами по себе различия между левой и правой половинами листа ненаправлены и независимы, и их нельзя свести ни к генотипическим, ни к средовым различиям.

Влияние половых различий на уровень флуктуирующей асимметрии не выявлено, даже на фоне существенных половых различий по анализируемым признакам.

Анализ медленно и быстрорастущих группировок особей в популяциях выявил существенное различие между ними по уровню флуктуирующей асимметрии. Более высокий уровень асимметрии у медленно растущих индивидуумов, можно рассматривать как следствие пониженной стабильности развития по сравнению с быстро растущими.

Популяционная динамика данного показателя во времени оказалась зависимой от стабильности изменений численности особей. У видов с небольшими скачками численности от поколения к поколению показатель флуктуирующей асимметрии является весьма стабильной популяционной характеристикой (при условии, что разные поколения развиваются в неизменных условиях). Иная ситуация у видов, численность которых значительно изменяется в течение популяционных циклов. Исследования, проведенные на обыкновенной бурозубке, (Sorex araneus) (динамика численности которой подвержена четкому четырехлетнему циклу, и максимально достигает 70-кратного размера) показали увеличение уровня флуктуирующей асимметрии у особей, родившихся в год максимальной численности, и уменьшение асимметричности у их потомков при спаде численности.

Индивидуальное развитие организма обеспечивается сложным регуляторным аппаратом, «защищающим нормальное формообразование от возможных нарушений, как со стороны уклонений во внутренних факторах, так и со стороны изменений в факторах внешней среды». Раскрытию механизмов этого регуляторного аппарата и формам его фенотипического проявления посвящен ряд работ. Данный механизм фигурирует под несколькими синонимичными названиями: стабильность развития, гомеостаз развития, гомеорез (стабилизированный поток). Т.е., подразумевается, что развитие проходит по определенному пути, и при высокой стабильности, развитие канализировано, т.е. за счет буферных механизмов протекает одинаково, несмотря на некоторые генетические и средовые воздействия. Переключение развития на другой путь происходит при достижении порогового уровня генотипического или средового воздействия.

Основными показателями стабильности развития являются нарушения развития и онтогенетический шум. Если собственно нарушения развития, фенодевианты, представляющие собой существенные изменения морфологии, обычно встречаются в природных популяциях с частотой не выше нескольких процентов, то онтогенетический шум оказывается операциональным критерием оценки в природных популяциях (Захаров, 1987). Онтогенетический шум, случайная спонтанная изменчивость развития или реализационная изменчивость наиболее четко и просто может быть оценен по флуктуирующей асимметрии билатеральных структур. Преимущество подхода состоит в том, что при этом известна заданная норма, т.е. то, что должно быть при отсутствии воздействий, - симметрия, отклонения от которой в ходе развития и представляют собой онтогенетический шум (Захаров и др., 2001).

К настоящему моменту накоплено много данных, убедительно доказывающих чувствительность уровня флуктуирующей асимметрии к различным по происхождению антропогенным воздействиям.

Одни из самых первых сведений о чувствительности флуктуирующей асимметрии к химическому загрязнению антропогенного происхождения были получены Валентайном с соавторами. Ими анализировались три вида рыб (Paralabrax nedulifer, Leuresthes tenuis, Amphistichus argenteus) из разных семейств обитающих вдоль Калифорнийского побережья.

Выборки были взяты для временного и пространственного анализа. В ходе работы выявлено, увеличение асимметрии у южных берегов Калифорнии, наиболее густо населенного и промышленно развитого района, характеризующегося повышенным уровнем загрязнения среды различными токсикантами. Временной анализ показал большую асимметричность у молодых особей, чем у более старших, что также согласуется с данными о динамике загрязнения. Несмотря на то, что, по мнению самого автора, полученные данные необходимо рассматривать как ориентировочные, в дальнейшем в экспериментальных исследованиях была продемонстрирована четкая зависимость возрастания уровня флуктуирующей асимметрии у рыб при повышении концентрации ДДТ.

Сравнение выборок большеротого американского черного окуня (Micropterus salmoides) из различных водоемов Южной Каролины показало, что максимальные значения асимметрии характеризуют выборку рыб из водоема, имеющего высокий уровень загрязнения ртутью.

У трехиглой колюшки (Gasterosteus aculeatus) проводилось сравнение асимметрии числа боковых пластин из двух рек в Латвии. Эти реки расположены недалеко друг от друга и представляют водоемы одного типа, но в одну из них производится сток вод целлюлозно-бумажного комбината. Полученные результаты свидетельствуют о многократном возрастании асимметрии в загрязненном водоеме (Захаров, 1981).

В другой работе было проведено сравнение выборок из одной и той же популяции до и после начала интенсивного антропогенного воздействия на примере серого тюленя (Halichoerus grypus) Балтийского моря. Были исследованы коллекционные черепа до 1940 года и после 1960 года. По данным шведских исследователей, интенсивное загрязнение Балтийского моря у побережья Швеции началось в 50-х - 60-х годах, что привело к резкому возрастанию уровня таких поллютантов, как ДДТ и ПХБ в теле балтийских тюленей после 1955 г. По полученным данным и величина дисперсии асимметрии и процент асимметрично выраженных неметрических признаков, среднее число асимметричных признаков существенно выше во второй выборке (Захаров, 1987).

Позже в лабораторных условиях произведена оценка воздействия полихлорбифенилов на американских норок Mustela vison (Borisov et al.1997). Если в контроле стабильность развития у мертворожденных норок была существенно ниже (высокая асимметрия), чем у живорожденных, то в опыте при интоксикации, и те и другие имели сходный уровень нарушений развития. Таким образом, нарушение стабильности развития имеет место при ухудшении состояния организма в силу различных причин, но не является причиной его гибели.

Однако, вероятно успех планируемого исследования может зависеть от вида-биоиндикатора, адекватно отражающего индицируемый вид воздействия.

Так у двух видов грызунов из загрязненного нефтеотходами района Техаса, уровень флуктуирующей асимметрии морфометрических показателей не отличался значимо от контроля (Owen, McBee, 1990).

Крайне интересны работы, посвященные индицированию радиоактивного загрязнения. Например, проводилось изучение флуктуирующей асимметрии восьми краниометрических признаков у восточноевропейских полевок из двух естностей, находящихся в зоне влияния Тоцкого радиоактивного следа, и контрольной популяции. Среднепопуляционные обобщенные показатели были остоверно выше в импактных популяциях, чем в контрольной. Вероятно, нарушения онтогенетического гомеостаза у полевок из зоны радиоактивного следа являются результатом загрязнения радионуклидами (в первую очередь, плутонием), которое привело к облучению многих поколений полевок в течение более чем 40 лет. Полученные результаты дают новые основания для использования флуктуирующей асимметрии мерных признаков млекопитающих в качестве индикатора антропогенного воздействия (Гилева, Нохрин, 2001).

В ряде работ предпринималась попытка индицирования комплексной антропогенной нагрузки без выделения ведущего фактора (Чубинишвили, 1998; Лебедева. 1999; Венгеров, 2001; Захаров, Чубинишвили 2001; Чистякова, Кряжева, 2001; Лебедева, Савицкий, 2003). Например, сравнивались выборки домового воробья (Passer domesticus), собранных в двух точках: центральная усадьба Воронежского заповедника и в Коминтерновском районе города Воронежа (близость крупных предприятий, магистраль с интенсивным движением автотранспорта). В результате, показатель флуктуирующей асимметрии во второй выборке оказался значительно выше по сравнению с заповедником на достоверном уровне (Венгеров, 2001).

флуктуирующая асимметрия тополь черный

1.2 Характеристика вида - Тополь черный (Populus nigra)

Ботаническое описание

Чёрный тополь. Латинское название: Populus nigra. Семейство: Ивовые - Salicaceae. Народное название: осокорь.

Корневая система хорошо разветвлена. Она включает в себя поверхностные и наклонно распространяющиеся корни, от которых отходят глубоко проникающие в почву якорные корни. При заносе самой нижней части ствола песком и илом образуются придаточные корни, формирующие в той или иной мере выраженный второй ярус. Мощная корневая система обеспечивает хороший рост всей массы дерева и вместе с тем придаёт ему высокую устойчивость в период течения паводковых вод и движения льда, а также сильных порывов ветра. Ветровал не характерен для тополя чёрного. Обладает большой способностью образовывать пнёвую поросль.

Ствол одинарный либо развершиненный, более или менее прямой, слабоовальный, у естественных клонов с кривизной. Тип ветвления моноподиальный. У средневозрастных и старых деревьев кора в нижней части ствола толстая 4-6 см, тёмно-серая, растрескивающаяся, выше по стволу светло-серая без трещин. Гребни корки прерывающиеся.

Крона чаще широкая или яйцевидная, с толстыми ветвями, особенно в нижней части ствола. Годичные побеги голые, цилиндрические, желтовато-серые, блестящие с беловатыми чечевичками. Порослевые - серовато-зелёные.

Почки многопокровные, почечные чешуи свободные. Терминальные (верхушечные) почки длиной 7-10 мм, удлинённо-овальные, остроконечные, бурые, блестящие, покрытые смолистым налётом, при распускании клейкие и душистые. Боковые почки мельче, более или менее прижатые, нижние часто с отогнутой верхушкой.

Листья простые, черешковые, цельные, очерёдно расположенные, ежегодно опадающие. Листовые пластинки голые, длиной 4-11 см, шириной 3-9 см, ромбовидные либо овально-треугольные, сверху зелёные, снизу бледнее, с оттянутой верхушкой, реже с коротким заострением, при основании широколиновидные или прямосрезанные. Наибольшая ширина пластинки находится близко от её основания. Отношение длины листовой пластинки к её ширине в среднем равно 1,34. Край листовой пластинки, за исключением основания и оттянутой верхушки, пильчатый (мелкопильчатый, крупнопильчатый, неравнопильчатый), иногда острогородчатый, с железистыми зубцами. Черешки голые, с боков сплюснутые, короче листовой пластинки, при основании пластинок без желёзок. Листовые рубцы сердцевидные. Жилкование листьев перистое. Листовой след трёхпучковый. Эпидерма однослойная. Устьица расположены на обеих сторонах листовой пластинки, но более многочисленны на нижней стороне. Средняя длина замыкающих клеток около 30 мкм. В одной замыкающей клетке содержится 7-10 хлоропластов. Весьма сильно варьируют величина и форма листьев на удлинённых побегах молодых деревьев и на быстрорастущих корневых отпрысках.

Тополь чёрный - двудомное растение. Цветёт в конце апреля - начале мая, почти одновременно с распусканием листьев. Способ опыления - анемофильный (ветроопыление). Соцветия однополые, многоцветковые, висячие серёжки.

Мужские серёжки длиной 6-9 см. Прицветники бурые, обычно голые, 3-5 мм длиной, глубоко надрезанные, бахромчатые. На бледно-зелёном овально-продолговатом диске 8-30 тычинок с ярко-пурпурными пыльниками. Диаметр окрашенных (набухших) пыльцевых зёрен равен ~28 мкм.

Женские серёжки длиной 5-6 см с 30-40 цветками, сидящими на коротких цветоножках. Завязь до половины заключена в околоцветник. После оплодотворения цветков серёжки увеличиваются до 8-11 см. В лабораторных условиях при температуре воздуха 18-22 °C семена созревают через 28-30 дней после опыления цветков, в естественных условиях этот период значительно больше.

Плод - одногнёздная многосемянная сухая двустворчатая коробочка длиной 5-7 мм, толщиной 3-5 мм, содержащая 10-12 семян длиной 2-2,5 мм. Семена снабжены пучком шелковистых волосков, способствующих переносу их ветром (Цвелёв, 1994).

 



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.43.140 (0.022 с.)