Вопрос № 1. Нейрон. Виды нейронов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос № 1. Нейрон. Виды нейронов.



ВОПРОС № 1. НЕЙРОН. ВИДЫ НЕЙРОНОВ.

Нейрон (от греч. néuron — нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов. Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона. Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Структурная классификация           

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

ВОПРОС № 2. АКСОН. ДЕНДРИТ.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны.

Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

ВОПРОС № 6. ЭПЕНДИМОЦИТЫ.

Эпендимоциты — эпителиоподобные клетки нейроглии, выстилающие все желудочки мозга и спинномозговой канал. Эпендимоциты выполняют в центральной нервной системе опорную, разграничительную и секреторную функции. Тела эпендимоцитов вытянуты, на свободном конце — реснички (теряемые во многих отделах мозга после рождения особи). Биение ресничек способствует циркуляции спинномозговой жидкости. Со стороны эпендимоцита, обращенной внутрь тканей мозга, от клетки отходит длинный, ветвящийся отросток.

Некоторые эпендимоциты выполняют секреторную функцию, участвуя в образовании и регуляции состава цереброспинальной жидкости. Цитоплазма эпендимоцитов содержит развитую эргастоплазму и различные включения.

 Некоторые клетки обладают секреторной активностью. При этом гранулы секрета попадают в спинномозговую жидкость. Особенность наличие крупных митохондрий в цитоплазме, в кропление жира и пигментов.

ВОПРОС № 7. АСТРОЦИТЫ.

Астроцит — тип нейроглиальной клетки. Происходит из спонгиобластов, развивающихся в клетке, имеющие множество отростков. Длинные извитые отростки переплетаются с отростками нейронов. Значительное число отростков астроцитов представляют собой «ножки», плотно прилегающие к капиллярам и покрывающие собой почти всю поверхность сосуда. Астроциты, расположенные в местах концентрации тел нейронов (серое вещество), образуют больше отростков, чем астроциты в белом веществе. Таким образом, астроциты – это клетки, располагающиеся между капиллярами и телами нейронов и осуществляющие транспорт веществ из крови в нейроны и обратно. Кроме того, астроциты связывают с кровеносным руслом спинномозговую жидкость.

Функции

· Опорная и разграничительная функция — поддерживают нейроны и разделяют их своими телами на группы (компартменты). Эту функцию позволяет выполнять наличие плотных пучков микротрубочек в цитоплазме астроцитов.

· Трофическая функция — регулирование состава межклеточной жидкости, запас питательных веществ (гликоген). Астроциты также обеспечивают перемещение веществ от стенки капилляра до плазматической мембраны нейронов.

· Участие в росте нервной ткани: астроциты способны выделять вещества, распределение которых задает направление роста нейронов в период эмбрионального развития. Рост нейронов возможен как редкое исключение и во взрослом организме в обонятельном эпителии, где нервные клетки обновляются раз в 40 дней.

· Участие в нейрональной миграции: в ростральном миграционном тракте астроциты образуют глиальные трубки, по которым нейробласты, образованные при взрослом нейрогенезе, продвигаются в обонятельную луковицу.

· Гомеостатическая функция — обратный захват медиаторов и ионов калия. Извлечение глутамата и ионов калия из синаптической щели после передачи сигнала между нейронами.

· Гематоэнцефалический барьер — защита нервной ткани от вредных веществ, способных проникнуть из кровеносной системы. Астроциты служат специфическим «шлюзом» между кровеносным руслом и нервной тканью, не допуская их прямого контакта.

· Модуляция кровотока и диаметра кровеносных сосудов — астроциты способны к генерации кальциевых сигналов в ответ на нейрональную активность. Астроглия участвует в контроле кровотока, регулирует высвобождение некоторых специфических веществ,

· Регуляция активности нейронов — астроглия способна высвобождать нейропередатчики.

· Регуляция медленноволновой активности во время сна.

Виды астроцитов

Астроциты делятся на фиброзные (волокнистые) и плазматические. Фиброзные астроциты располагаются между телом нейрона и кровеносным сосудом и преимущественно находятся в белом веществе, характеризуются высоким содержанием глиального фибриллярного кислого белка, а плазматические — между нервными волокнами в сером веществе.

ВОПРОС № 9. МИКРОГЛИЯ.

Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки. Происходят из моноцитов крови (потомки стволовой клетки крови), то есть характеризуются мезодермальным происхождением. В ходе воспалительного процесса микроглия активируется, причем форма клеток претерпевает сильные изменения — в активированном состоянии они выпускают многочисленные отростки, напоминая амёбы. Микроглия распознает различные агенты в своем окружении при помощи специализированных мембранных рецепторов. Микроглия также подавляет патогены при помощи выделения цитотоксических веществ. Показано, что в культуре клетки микроглии (как и другие фагоциты в ходе «респираторного взрыва») выделяет большие количества перекиси водорода и NO. Оба эти вещества могут убивать нейроны. Микроглия выделяет также специфические протеазы и цитокины (например, интерлейкин-1, который может вызывать демиелинизацию аксонов). Наконец, микроглия может повреждать нейроны при выделении избытков глутамата, при действии которого на NMDA-рецепторы возникает явление эксайтотоксичности. Таким образом, чрезмерная активация микроглии может приводить к патологическим процессам и, в частности, к гибели нейронов, что, как полагают, является одним из патологических механизмов нейродегенеративных болезней, таких как болезнь Альцгеймера, болезнь Паркинсона, деменция, вызванная СПИДом, и некоторых других. Клетки микроглии происходят из мезодермы. Они отличаются небольшими размерами. Эти клетки могут активно передвигаться и выполнять фагоцитарные функции. Благодаря способности к активной миграции микроглия распределена по всей центральной нервной системе. При раздрожении форма клетки меняется, отростки втягиваются внутрь и клетка округляется.

ВОПРОС № 15. РЕЦЕПТОРЫ.

Реце́птор — сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс. В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизмененными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини).

Принцип работы рецепторов

Стимулами для разных рецепторов могут служить свет, механическая деформация, химические вещества, изменения температуры, а также изменения электрического и магнитного поля. В рецепторных клетках (будь то непростредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит изменению активности мембранных ионных рецепторов и изменению мембранного потенциала клетки. Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы), то обычно происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как де-, так и гиперполяризоваться. В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Такой механизм реализован, в частности, в чувствительных элементах сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механо-, термо- и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки). В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов

Существуют несколько классификаций рецепторов:

1. По положению

· Экстерорецепторы (экстероцепторы) - расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)

· Интерорецепторы (интероцепторы) - расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)

· Проприорецепторы (проприоцепторы) - рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.

2. По способности воспринимать разные стимулы

· Мономодальные - реагирующие только на один тип раздражителей (например, фоторецепторы - на свет)

· Полимодальные - реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

3. По адекватному раздражителю

· Хеморецепторы - воспринимают воздействие растворенных или летучих химических веществ.

· Осморецепторы - воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды).

· Механорецепторы - воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т.п.)

· Фоторецепторы - воспринимают видимый и ультрафиолетовый свет

· Терморецепторы - воспринимают понижение (холодовые) или повышение (тепловые) температуры

· Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность, которая не позволяет отнести их, например, к "высокопороговым терморецепторам", состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов.

· Электрорецепторы - воспринимают изменения электрического поля

· Магнитные рецепторы - воспринимают изменения магнитного поля

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции - осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции - зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, воспринимающие pH, концентрации углекислого газа и кислорода крови, включены в регуляцию дыхания и т.д.

ВОПРОС № 16. СИНАПСЫ.

Си́напс (от греч. обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. В зависимости от механизма передачи нервного импульса различают:

· химические;

· электрические — клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

· смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

 

ВОПРОС № 23. ОБЩИЙ ПЛАН СТРОЕНИЯ ГОЛОВНОГО МОЗГА.

Головно́й мозг — часть центральной нервной системы подавляющего большинства хордовых, её головной конец. Головной мозг с окружающими его оболочками располагается в полости черепа. Форма черепа определяется рельефами мозга. Масса мозга взрослого человека около 1500 грамм. Головной мозг состоит из трёх крупных частей:

1. полушария.

2. Мозговой ствол.

3. Мозжечок.

Самая развитая часть полушария. С физиологической точки зрения они являются наиболее функционально значимыми. Полушария образуют плащ, который является физиологически новым. Они разделены глубокой продольной щелью, в глубине которой залегает мозолистое тело, соединяющее оба полушария. Верхняя латеральная поверхность мозга образует …, нижняя поверхность уплощена, представляет собой основание повторяющее рельеф черепа. На основании мозга выходят 12 пар черепных нервов. Филогенетическая древняя часть мозга представлена стволом. Сюда входят продолговатый мозг, средний мозг, промежуточный и часть заднего – мост. Именно из ствола отходят черепные нервы. Головной мозг состоит из следующих отделов:

1. Конечный мозг.

2. Средний мозг.

3. Промежуточный мозг.

4. Задний мозг.

5. Продолговатый.

 

ВОПРОС № 40 МОЗЖЕЧОК.

Мозжечок (лат. cerebellum — дословно «малый мозг») — отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса. У человека располагается позади продолговатого мозга и варолиева моста, под затылочными долями полушарий головного мозга. Посредством трёх пар ножек мозжечка получает информацию из коры головного мозга, базальных ганглиев экстрапирамидной системы, ствола головного мозга и спинного мозга. У различных таксонов позвоночных взаимоотношения с другими отделами головного мозга могут варьировать.

У позвоночных, обладающих корой больших полушарий, мозжечок представляет собой функциональное ответвление главной оси «кора больших полушарий — спинной мозг». Мозжечок получает копию афферентной информации, передаваемой из спинного мозга в кору полушарий головного мозга, а также эфферентной — от двигательных центров коры полушарий к спинному мозгу. Первая сигнализирует о текущем состоянии регулируемой переменной (мышечный тонус, положение тела и конечностей в пространстве), а вторая даёт представление о требуемом конечном состоянии. Сопоставляя первое и второе, кора мозжечка может рассчитывать ошибку, о которой сообщает в двигательные центры. Так мозжечок непрерывно корректирует и произвольные, и автоматические движения.

Хотя мозжечок и связан с корой головного мозга, его деятельность не контролируется сознанием.

Мозжечок выполняет следующие функции: регуляция позы и мышечного тонуса, контроль быстрых произвольных движений, направляет медленное целенаправленное координированное движение, масса мозжечка 120-150 гр., располагается в задней черепной яме, сверху ограничена затылочной долей полушарий, отделенной продольной щелью мозга. Мозжечок состоит из двух парных полушарий и червя. Червь объединяет оба полушария, является фолугенитической старой частью, афферентных и эфферентные волокна, связывающие мозжечок с другими отделами нервной системы образуют 3 пары ножек мозжечка, верхние идут к четверохолмию, средние к мосту, нижние к продолговатому мозгу. Поверхность полушарий и червя разделены на борозды, между ними расположены узкие, тонкие листки. Группы листков образуют дольки мозжечка. Борозды все сплошные, переходят с одного полушария на червь и на другое полушарие. Мозжечок состоит из серого и белого вещества. Белое вещество, проникая между серым ветвится, образуя «дерево жизни» мозжечка. Серое вещество представлено корой толщиной 1-2 мм, а также ядрами: шаровидное, зубчатое, пробковое. Все они парные. В коре мозжечка выделяют 3 слоя. Первый наружный – молекулярный, второй - ганглионарный, и третий внутренний зернистый. Во втором и третьем слое в основном мелкие нейроны. Полученную информацию в виде импульсов от коры головного и спинного мозга мозжечок интегрирует клетками Пуркинье.

 

ВОПРОС №44 ЧЕРЕПНЫЕ НЕРВЫ.

Черепны́е не́рвы (черепномозговые нервы, лат. nervi craniales) — двенадцать пар нервов, отходящих от ствола мозга. Их обозначают римскими цифрами по порядку их расположения, каждый из них имеет собственное название.

В русскоязычных источниках довольно часто используется термин черепномозговые нервы. Согласно новейшей анатомической терминологии принятой в Сан-Пауло в 1997 году термин обозначен как лат. Nervi craniales (черепные нервы). В 6-м издании атласа анатомии человека Синельникова, монографиях посвящённых анатомии человека термин унифицирован под международную анатомическую классификацию. При этом о частоте использования сочетания «черепномозговые нервы» свидетельствует первая фраза соответствующей статьи Большой советсткой энциклопедии: Ядра черепных нервов залегают в сером веществе головного мозга. Вегетативные бывают висцирально- чувствительные восприятия раздрожения от внутренних органов и весцерально-двигательными несущими импульс к рабочему органу. Все черепные нервы имеют названия и порядковый номер.

Чувствительные нервы – обонятельный, зрительный, преддверноулитковый.

Двигательные – глазодвигательный, отводящий, добавоный, подъязычный, блоковой.

Смешанные – блуждающий, троичный, лицивой, языкоглаточный.

Функции черепных нервов

Обонятельный нерв (обонятельные нервы) — первый из черепных нервов, отвечающий за обонятельную чувствительность.

Зри́тельный нерв — вторая пара черепных нервов, по которым зрительные раздражения, воспринятые чувствительными клетками сетчатки, передаются в головной мозг.

Глазодвигательный нерв— III пара черепных нервов, отвечающий за движение глазного яблока, поднятие века, реакцию зрачков на свет.

Блоковый нерв— IV пара черепных нервов, который иннервируя верхнюю косую мышцу, которая поворачивает глазное яблоко кнаружи и вниз.

V (тройничный) нерв является смешанным. По трем его ветвям (ramus ophthalmicus — V1, ramus maxillaris — V2, ramus mandibularis — V3) через Гасеров узел (ganglion trigeminale) идет информация от верхней, средней и нижней третей лица соответственно. Каждая веточка несет информацию от мышц, кожных и болевых рецепторов каждой трети лица. В Гасеровом узле информация сортируется по типу, и уже информация от мышц всего лица идет в чувствительное ядро тройничного нерва, расположенный большей частью в среднем мозге (частично заходит в мост); кожная информация от всего лица идет в «главное ядро» (nucleus pontinus nervi trigemini), расположенное в мосту; а болевая чувствительность — в nucleus spinalis nervi trigemini, идущий от моста через продолговатый мозг в спинной.

Тройничному нерву принадлежит также двигательное ядро, залегающее в мосту и отвечающее за иннервацию жевательных мышц.

Отводящий нерв— VI пара черепных нервов, который иннервируя латеральную прямую мышцу (лат. m. rectus lateralis) отвечает за отведение глазного яблока.

Лицевой нерв (лат. nervus facialis), седьмой (VII) из двенадцати черепных нервов, выходит из мозга между варолиевым мостом и продолговатым мозгом. Лицевой нерв иннервирует мимические мышцы лица. Также в составе лицевого нерва проходит промежуточный нерв, ответственный за иннервацию слёзной железы, стременной мышцы и вкусовой чувствительности двух передних третей языка.

Преддверно-улитковый нерв (лат. nervus vestibulocochlearis) — нерв специальной чувствительности отвечающий за передачу слуховых импульсов и импульсов, исходящих из вестибулярного отдела внутреннего уха.

Языкоглоточный нерв (лат. nervus glossopharyngeus) — IX пара черепных нервов. Является смешанным. Обеспечивает:

· двигательную иннервацию шилоглоточной мышцы (лат. m. stylohyoideus), поднимающую глотку

· иннервацию околоушной железы (лат. glandula parotis) обеспечивая её секреторную функцию

· общую чувствительность глотки, миндалин, мягкого нёба, евстахиевой трубы, барабанной полости

· вкусовую чувствительность задней трети языка.

Блуждающий нерв (лат. n.vagus) — X пара черепных нервов. Является смешанным. Обеспечивает:

· двигательную иннервацию мышц мягкого нёба, глотки, гортани, а также поперечно-полосатых мышц пищевода

· парасимпатическую иннервацию гладких мышц лёгких, пищевода, желудка и кишечника (до селезёночного изгиба ободочной кишки), а также мышцы сердца. Также влияет на секрецию желез желудка и поджелудочной железы

· чувствительную иннервацию слизистой оболочки нижней части глотки и гортани, участка кожи за ухом и части наружного слухового канала, барабанной перепонки и твёрдой мозговой оболочки задней черепной ямки.

Добавочный нерв (лат. nervus accessorius) — XI пара черепных нервов. Содержит двигательные нервные волокна иннервирующие мышцы ответственные за повороты головы, приподнимание плеча и приведение лопатки к позвоночнику.

Подъязычный нерв (лат. nervus hypoglossus) — XII пара черепных нервов. Отвечает за движение языка.

 

 

Конец формы

ВОПРОС № 1. НЕЙРОН. ВИДЫ НЕЙРОНОВ.

Нейрон (от греч. néuron — нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов. Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона. Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 71; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.55.14 (0.077 с.)