Лекция 52. Источники опорного напряжения (Занятие 2.4.5). 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция 52. Источники опорного напряжения (Занятие 2.4.5).



Вопросы:

1.Стабилитроны.

2.Стабилитронные интегральные микросхемы.

3. Источник опорного напряжения на UБЭ стабилитроне.

 

Необходимость в хорошем источнике опорного напряжения часто возникает во многих схемах. Например, вам нужно построить прецизионный источник стабилизированного питания с лучшими характеристиками, чем у готовых стабилизаторов типа 723 (поскольку интегральные схемы стабилизаторов рассеивают заметную мощность из-за наличия встроенных проходных транзисторов, они могут довольно ощутимо нагреваться с соответствующим дрейфом параметров), или нужно построить прецизионный источник тока (т. е. схему со стабилизированным выходным током). Далее, есть еще одна область, в которой нужны прецизионные источники опорных напряжений (но не прецизионные источники питания), — это проектирование точных вольтметров, омметров или амперметров.

Существуют два вида источников опорного напряжения - стабилитроны и так называемые источники опорного напряжения с шириной запрещенной зоны полупроводник; каждый из них может использоваться как сам по себе, так и в составе ИМС источника опорного напряжения.

 

Вопрос 1 Стабилитроны.

Простейшим видом источников опорного напряжения является стабилитрон. В сущности, это диод, работающий при обратном смещении на участке, соответствующем напряжению пробоя, где ток пробоя очень быстро возрастает при дальнейшем росте напряжения. Чтобы использовать этот диод в качестве источника опорного напряжения, надо обеспечить прохождение через него приблизительно постоянного тока. Обычно это делается с помощью резистора, подключенного к достаточно высокому напряжению, и таким образом строится наиболее примитивный стабилизированный источник.

Стабилитроны выпускаются на целый ряд значений напряжения — от 2 до 200 В (их напряжения имеют тот же набор значений, что и сопротивления стандартных 5 % резисторов), с допустимой мощностью рассеяния от долей ватта до 50 Вт и допуском на напряжение стабилизации от 1 до 20 %. Привлекательные на первый взгляд в качестве опорных источников напряжения для различных целей стабилитроны, однако, не так просты в использовании по многим причинам: они имеют конечный набор значений напряжения, у них большой допуск на напряжение стабилизации (кроме дорогих прецизионных стабилитронов), они сильно шумят и их напряжение зависит от тока и температуры. Вот пример двух последних эффектов: стабилитрон на 27 В из распространенной серии 1N5221 стабилитронов на 500 мВт имеет температурный коэффициент порядка +0,1 %/°С, и в силу этого его напряжение меняется на 1 %, когда ток изменяется от 10 до 50 % от максимального.

Есть исключение из правила о плохих характеристиках стабилитронов. Оказывается, что в окрестности значения напряжения стабилизации 6 В стабилитроны мало чувствительны к изменениям тока и при этом имеют почти нулевой температурный коэффициент. Этот эффект виден на кривых рис. 1.1, полученных путем измерения стабилитронов с разными напряжениями. Это характерное поведение связано с тем, что в стабилитронах в действительности используются два разных механизма пробоя: зенеровский и лавинный; первый — при низком напряжении, второй — при высоком.

 

 

Рисунок 1.1 - Зависимость дифференциального сопротивления стабилитронов (а) и вариаций напряжения стабилизации стабилитронов (б) от номинального напряжения стабилизации (с разрешения Motorola, Inc.).

Если стабилитрон используется только как стабильный источник напряжения и вам все равно, каково будет это напряжение, то лучше всего взять один из компенсированных опорных стабилитронов, состоящих из стабилитрона приблизительно на 5,6 В и последовательно с ним соединенного диода, смещенного в прямом направлении. Напряжение стабилитрона выбирается так, чтобы взаимно компенсировать положительный температурный коэффициент стабилитрона и отрицательный температурный коэффициент диода, соответствующий около — 2,1 мВ/°С.

 Как видно из рис. 1.2, температурный коэффициент зависит от рабочего тока, а также от напряжения стабилитрона. Поэтому, выбирая ток стабилитрона, можно как-то «подстроить» температурный коэффициент. Из таких стабилитронов со встроенными последовательно диодами получаются неплохие источники опорного напряжения. Для примера: серия дешевых стабилитронов на 6,2 В 1N821 имеет температурные коэффициенты от 10-4/°С (1N821) до 5·10-6/°С (1N829), а стабилитроны 1N940 и 1N946 на 9 В и 11,7 В имеют температурный коэффициент 2·10-6/°С.

 

Рисунок 1.2. Зависимость температурного коэффициента напряжения стабилизации стабилитронов от их номинального напряжения (с разрешения Motorola, Inc.).

 

 Задание рабочего тока стабилитрона. Описанные выше компенсированные стабилитроны могут использоваться в схемах в качестве источников стабильного напряжения, но надо обеспечить питание их постоянным током. Для серии 1N821 изготовителем указано 6,2 В +5 % при токе 7,5 мА с дифференциальным сопротивлением 15 Ом; таким образом, изменение тока на 1 мА изменяет напряжение в три раза сильнее, чем изменение температуры от -55 до +100 °C (для прибора 1N829). На рис. 1.3 показано, как довольно просто можно обеспечить постоянный ток смещения прецизионного стабилитрона.

Рисунок 1.3 – Способ обеспечения постоянного тока смещения прецизионного стабилитрона.

Операционный усилитель включен как неинвертирующий усилитель и имеет на выходе стабильное напряжение, равное +10,0 В, которое используется для получения прецизионного тока 7,5 мА. Это самозапускающаяся схема, но она может включиться с любой полярностью на выходе! При «неправильной» полярности стабилитрон работает как обычный диод с прямым смещением. Включение операционного усилителя от однополярного источника питания снимает эту странную особенность. Прежде чем ставить в схему тот или иной ОУ, убедитесь, что его диапазон синфазных входных сигналов включает в себя потенциал минусовой шины источника питания (ОУ с «однополярным питанием»).

Существуют компенсированные специальные стабилитроны с гарантированной временной стабильностью напряжения; этот параметр, как правило, не указывается. Примеры - серия 1N3501 и 1N4890. Стабилитроны такого типа имеют гарантированную стабильность 5·10-6/1000 ч или еще лучше. Они недешевы.

 



Поделиться:


Последнее изменение этой страницы: 2021-04-12; просмотров: 107; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.86.155 (0.005 с.)