Перегонка при пониженном давлении (в вакууме) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Перегонка при пониженном давлении (в вакууме)



Перегонка под вакуумом применяется с целью снижения температуры кипения веществ. Это бывает необходимо в тех случаях, когда соединения разлагаются в процессе их перегонки при атмосферном давлении или их температура кипения выше 200 оС. Фракционная перегонка при пониженном давлении нередко позволяет добиться лучшей очистки. Объясняется это тем, что снижение температуры кипения с понижением давления у веществ из различных классов, например у кислот и эфиров, спиртов и углеводородов, происходит не строго пропорционально. Поэтому в вакууме разница в температурах кипения компонентов разделяемой смеси может оказаться даже большей, чем при атмосферном давлении. Фракционная вакуум-перегонка может оказаться полезной также при разделении некоторых азеотропных смесей. При обычном давлении этиловый спирт, как известно, дает с водой нераздельнокипящую смесь с содержанием воды 4,4% (масс). При понижении давления до   10 кПа (75 мм рт. ст.) азеотропная смесь не образуется и спирт в принципе может быть отогнан от воды.

С другой стороны, вакуум-перегонка - более длительный процесс и связана с большим количеством экспериментальных трудностей, поэтому если вещество хорошо отгоняется при атмосферном давлении, не следует стремиться перегонять его под вакуумом.

При отсутствии литературных данных температуру кипения вещества в вакууме находят с помощью номограммы на продолжении прямой линии, соединяющей температуру кипения этого вещества при атмосферном давлении и значение остаточного давления. Для ориентировочных расчетов можно пользоваться также эмпирическим правилом: при снижении давления в два раза температура кипения веществ уменьшается примерно на 15 оС.

В принципе как простая, так и фракционная перегонка под вакуумом проводится аналогично перегонке при атмосферном давлении, однако имеются и существенные отличия, на которые следует обратить особое внимание.

1. Установки для перегонки под вакуумом (рис. 9) собираются герметично, лучше всего на шлифах с использованием вакуумной смазки. Перед сборкой установки все стеклянные части должны быть тщательно осмотрены. В случае обнаружения дефектов, например мельчайших трещин, использовать деталь для работы под вакуумом нельзя. Следует также обращать внимание на чистоту шлифов. Даже небольшая песчинка на шлифе может вызвать его поломку, что при наличии разряжения в системе нередко приводит к взрыву.

Рисунок 9 – Прибор для перегонки под вакуумом:

1 - плитка; 2, 5 - термометр; 3 - капилляр;

4 - зажим для регулирования подсоса воздуха в капилляр;

6 - колба Кляйзена; 7 - баня; 8 - холодильник; 9 - «паук»;

10 - приемник; 11 - вакуумметр; 12 - тройник;

13 - предохранительная склянка

2. Во всех случаях работать с вакуумными установками можно только в защитных очках или маске. После подключения вакуума нельзя вносить какие либо изменения в установку - подвинчивать зажимы лапок, поднимать или опускать установку и т. д.

3. Как перегонная колба, так и приемный сосуд обязательно должны быть круглодонными. Применение плоскодонных колб в вакуумных установках запрещается.

4. С целью обеспечения равномерного кипения при перегонке под вакуумом используют не «кипелки», а капилляр, через который под слой перегоняемой жидкости засасывается воздух или инертный газ. Капилляр вытягивают из стеклянной, лучше толстостенной, трубки. Конец его должен быть как можно более тонким. Широкий капилляр, во-первых, вызывает слишком бурное кипение, приводящее к брызгоуносу, а во-вторых, не позволяет достигнуть высокого вакуума. Для проверки пригодности капилляра оттянутый конец погружают в пробирку с какой-нибудь подвижной жидкостью, например эфиром, и сильно дуют в трубку. Через слой эфира при этом должны проскакивать очень мелкие пузырьки. Капилляр вводят либо через насадку Кляйзена, либо через второе горло колбы так, чтобы он почти доходил до дна, но не касался его. На верхний конец капиллярной трубки надевают отрезок резинового шланга, просовывают в него тонкую проволочку и зажимают винтовым зажимом. С помощью зажима можно регулировать подачу воздуха в капилляр, увеличивая или уменьшая тем самым интенсивность кипения.

5. При сборке вакуумных установок следует обращать внимание на диаметр отводных трубок, которые не должны быть слишком узкими. Установлено, что если диаметр перегонной колбы превышает диаметр отводной трубки более чем в десять раз, уже при средней скорости перегонки сопротивление движению паров оказывается выше допустимого. Давление внутри перегонной колбы при этом оказывается на несколько миллиметров ртутного столба выше, чем давление по манометру.

Узкая отводная трубка или другие сужения на пути паров перегоняемого вещества нередко являются, таким образом, причиной того, что наблюдаемая температура кипения вещества оказывается выше ожидаемой. Из сказанного следует, что если желательно создать внутри перегонного сосуда давление менее 1-1,3 кПа (8-10 мм рт. ст.), внутренний диаметр отводной трубки для колб среднего размера  (0,5-1 л) должен быть не менее 10-12 мм, для небольших колб               (50-100 мл) - не менее 5 мм.

6. Если в случае перегонки при атмосферном давлении смена приемников для отбора различных фракций конденсата не представляет каких-либо затруднений, при вакуум-перегонке такую необходимость следует предусмотреть заранее.

При необходимости отбора 3-4 фракций используют так называемые «пауки». Направить конденсат в тот или другой приемник можно осторожным поворотом «паука» вокруг оси.

7. При использовании установки, изображенной на рисунке 9, конец шланга вакуумной системы надевают на отводную трубку аллонжа. Однако при длительной перегонке, особенно если температура кипения жидкости невысока, часть конденсата испаряется и беспрепятственно уносится в вакуумную систему.

После сборки установки ее обязательно проверяют на герметичность, для чего включают вакуум и следят за показаниями манометра. Хорошо собранная установка после отсоединения насоса держит вакуум по крайней мере несколько минут. Если установка пригодна для работы, в нее помещают перегоняемое вещество, подключают вакуум, регулируют ток газа через капилляр так, чтобы он давал струйку очень маленьких пузырьков, и только после этого начинают постепенное повышение температуры обогревающей бани. Поступать наоборот, т. е. вначале нагреть содержимое перегонной колбы, а затем создать разрежение в приборе, нельзя - это может привести к бурному вскипанию жидкости и перебросу ее в приемник.

Перегонку заканчивают в следующем порядке: вначале отключают обогрев перегонной колбы, затем осторожно впускают в систему воздух, соединяя ее с атмосферой при помощи специального крана, отключают вакуум-насос и после охлаждения установки разбирают ее, начиная с отсоединения приемной колбы с перегнанной жидкостью.

Очень удобны для простой вакуум-перегонки ротационные испарители. Их преимущества ярче всего проявляются при необходимости удаления растворителей из концентрированных растворов, при перегонке пенящихся жидкостей, которые обычно доставляют экспериментаторам особенно много хлопот. Для правильной работы испарителя раствор нагревают не до кипения. Интенсивное испарение достигается благодаря увеличению поверхности жидкости за счет непрерывного вращения перегонной колбы. Ротационный испаритель должен быть обязательной принадлежностью лабораторий, в которых часто занимаются перегонкой, ибо он позволяет         сэкономить много труда и времени.

Фракционная перегонка

С помощью однократной простой перегонки, как правило, не удается чисто разделить на компоненты смесь двух или нескольких жидкостей с разницей в температурах кипения менее 80 оС. При нагревании таких смесей вместе с легколетучей жидкостью испаряется также некоторое количество компонента с более высокой температурой кипения. В отличие от простой перегонки, при которой разделение составляющих смесь продуктов происходит только на стадии испарения, фракционная перегонка предусматривает частичную конденсацию образующихся паров и возвращение их обратно в перегонный сосуд. Конденсации и возврату в перегонную колбу подвергаются в первую очередь пары высококипящего компонента, а очищенные пары летучего продукта далее полностью конденсируются в холодильнике и собираются в приемнике. Так поэтапно перегоняется вся жидкость.

Перегонка называется фракционной потому, что вся перегоняемая жидкость собирается в разные приемники отдельными порциями, которые называются фракциями. Первые фракции содержат преимущественно вещество с самой низкой температурой кипения, последние - с самой высокой. Чистота разделения на отдельные фракции зависит от природы веществ, составляющих перегоняемую смесь, и от конструкции конденсирующих приборов - дефлегматоров или ректификационных колонок.

В лабораториях при фракционной перегонке обычно применяют дефлегматоры. На рисунке 10 изображена установка для фракционной перегонки с дефлегматором.

Существуют дефлегматоры различных конструкций, однако внимания заслуживают лишь наиболее простые и эффективные из них (елочного типа) и дефлегматоры с насыпной насадкой (стеклянные шарики, мелкие кольца, спирали). Хорошие дефлегматоры должны обеспечивать как можно большую поверхность соприкосновения поднимающихся паров со стекающим навстречу конденсатом, который называется флегмой.

Елочные дефлегматоры (рис. 11, б) выгодно отличаются от прочих небольшим сопротивлением движению паров, простотой изготовления, легкостью очистки; они удерживают сравнительно небольшое количество флегмы, что ценно при перегонке малых количеств веществ, и в то же время обеспечивают хороший контакт флегмы с парами.

Рисунок 10 - Установка для фракционной перегонки с дефлегматором:

1 – плитка; 2 – колба с дефлегматором; 3 – термометр; 4 – холодильник;                 5 - аллонж; 6 - приемный сосуд

Большая активная поверхность соприкосновения жидкости с парами может быть достигнута в дефлегматорах с насадкой (рис. 11, в). Часто применяющиеся в качестве насадки стеклянные бусы обладают минимальной удельной поверхностью и поэтому малоэффективны. Наиболее пригодной для заполнения лабораторных дефлегматоров и колонок считается насадка из одновитковых проволочных или стеклянных спиралей. Обычно используют проволоку диаметром 0,2-0,3 мм из нержавеющей стали или нихрома. С уменьшением диаметра спиралей увеличивается эффективность насадки, однако одновременно возрастает сопротивление движению паров в дефлегматоре. Оптимальный диаметр витков для приборов среднего размера равен 3-5 мм. Для изготовления одновитковых спиралей проволоку наматывают с помощью станка на металлический прут подходящего диаметра. Расстояние между витками примерно должно быть равно толщине проволоки. Полученную спираль снимают и разрезают по длине ножницами.

Следует, однако, иметь в виду, что даже самые хорошие лабораторные дефлегматоры обладают весьма ограниченной разделяющей способностью и пригодны лишь для грубого фракционирования, для очистки растворителей от малолетучих примесей и т.п.

Рисунок 11 - Дефлегматоры для фракционной перегонки:

а - шариковые дефлегматоры; б - елочный дефлегматор;                                          в - дефлегматор с насадкой

 

Удовлетворительное разделение с помощью дефлегматоров достигается лишь в тех случаях, когда разница в температурах кипения жидкостей составляет более 30 оС.

Если температура паров ни в начале, ни в конце перегонки не держится постоянной, это указывает на плохое качество разделения Количество промежуточной фракции при этом будет составлять более 1/3 от объема исходной смеси. В таких случаях для повышения качества разгонки следует использовать более эффективное оборудование. Ниже рассмотрены основные факторы, влияющие на эффективность фракционной перегонки с использованием дефлегматоров.

Высота дефлегматора. Размеры дефлегматора определяются количеством перегоняемой жидкости, температурой перегонки, требуемой полнотой разделения. С увеличением высоты рабочей части дефлегматора увеличивается и его разделяющая способность. Однако применение конструкций выше 80-90 см вряд ли целесообразно: вследствие неизбежных теплопотерь пары конденсируются в насадочной части и могут просто не достигнуть отводной трубки даже при интенсивном кипении жидкости в перегонной колбе. Кроме того, увеличение объема дефлегматора приводит к увеличению потерь перегоняемого продукта

Скорость перегонки. В отличие от простой перегонки, скорость которой ограничивается только возможной интенсивностью кипения жидкости и производительностью холодильника, скорость фракционной перегонки во многом определяет качество фракционирования. Превышение оптимальной скорости приводит к нарушению равновесия между флегмой и парами, и дефлегматор оказывается практически бесполезным. Кроме того, слишком высокая скорость испарения обычно вызывает «захлебывание» дефлегматора. При средней скорости в приемник должно поступать не более 1-2 капель дистиллята в секунду. В любом случае уменьшение скорости перегонки приводит к повышению качества фракционирования, однако соответственно увеличивается и время операции. Скорость перегонки регулируют обогревом перегонной колбы

Теплоизоляция. Для правильной работы дефлегматора его необходимо тщательно защитить от потери тепла (теплоизолировать). Применение дефлегматоров без изоляции - довольно распространенная грубая ошибка, резко снижающая качество фракционной перегонки. Надежность теплоизоляции должна быть тем выше, чем при более высокой температуре кипят разделяемые жидкости.

Количество флегмы. Важным фактором, влияющим на качество фракционирования, является количество флегмы. Хорошее разделение достигается лишь в том случае, если большая часть паров образует флегму, а меньшая отводится в приемник.

В тех случаях, когда разница в температурах кипения подлежащих разделению жидкостей составляет менее 30 оС, даже самые хорошие дефлегматоры не обеспечивают удовлетворительного разделения. Лучшие результаты дает применение ректификационных колонок. От дефлегматоров они отличаются сравнительно большими размерами, более эффективной теплоизоляцией, иногда даже с дополнительным обогревом, но главное - наличием специального устройства, называемого головкой, позволяющего производить полную конденсацию паров и распределение конденсата между орошением колонки и приемником.

Следует, однако, иметь в виду, что тонкое разделение близкокипящих жидкостей с применением ректификационных колонок является одной из сложных операций в лабораторной практике и нередко вызывает затруднения даже у опытных работников. Объяснение всех тонкостей ректификации выходит за рамки данного руководства. Если ректификация все же окажется необходимой, следует обратиться к специальным руководствам.

Обычные ректификационные колонки позволяют разделять смеси жидкостей, температуры кипения которых различаются на 7- 10 оС. Имеются специальные колонки, которые дают возможность разделять жидкости с разницей в температурах кипения 1-2 оС.

Лабораторные работы



Поделиться:


Последнее изменение этой страницы: 2021-04-05; просмотров: 296; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.120.133 (0.022 с.)