Методы обеспечения достоверности передачи информации по каналам связи. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы обеспечения достоверности передачи информации по каналам связи.



Для обеспечения передачи с требуемой достоверностью в течение за­данного интервала времени используются структурный и информационный резервы, рекомендуемые теорией надежности, а также введение информаци­онной избыточности в передаваемые сообщения, рекомендуемой теорией помехоустойчивого кодирования. Информационная избыточность обеспечи­вается многократным повторением передаваемой информации или примене­нием корректирующего кода, позволяющего на приемной стороне обнару­жить или исправить ошибки.

Введение структурного резерва заключается в использовании для одновременной передачи одного сообщения нескольких каналов связи. Принятые сообщения сравниваются, например, по принципу голосования. Правильной считается информация, принятая одинаковой в большинстве каналов. Для управления процессом передачи необходима обратная связь, которая обеспечивается обратным каналом.

На основе теории надежности и теории помехоустойчивого кодиро­вания для повышения достоверности передачи информации находят при­менение следующие методы:

1) Регенерация формы сигналов в центрах коммутации сетей или в их промежуточных звеньях - ретрансляторах.

Этот метод используется в системах передачи, имеющих длинные линии связи, в которых сигналы могут быть значительно ослаблены и ис­кажены, например, в оптических радиолиниях. В ретрансляторах принятые сигналы усиливаются, восстанавливаются по форме и передаются далее по линии связи.

2) Многократная передача одного итого же блока данных по одному каналу и сравнение принятых блоков с помощью мажоритарных устройств (устройств, работающих по принципу голосования). В этом случае блоки данных передаются последовательно, что увеличивает время передачи со­общения, как минимум, в три раза.

3) Передача одного и того же блока данных одновременно по одному каналу на разных частотах и сравнение принятых блоков по мажоритарно­му принципу. В этом случае полоса частот, отводимая для передачи одного сообщения, увеличивается в несколько раз.

4) Передача одного и того же блока данных одновременно по одному аналоговому каналу несколькими гармоническими несущими одной часто­ты, но сдвинутыми по фазе относительно друг друга. Такой метод не требует расширения полосы частот в канале связи.

5) Использование в передаваемом блоке данных длиной n бит не всех возможных комбинаций N 0 = 2 n, а лишь некоторого их ограниченного чис­ла разрешенных комбинаций: Np < N 0. На приемной стороне, хранящей в памяти все разрешенные комбинации, сравниваются принятые блоки с разрешенными. Несовпадение принятой комбинации с разрешенными оз­начает искажение в принятом блоке данных.

6) Использование корректирующих кодов, заключающееся во введе­нии в передаваемый блок данных дополнительных проверочных разрядов, которые позволяют обнаружить искажения. Контрольные биты формиру­ются по алгоритмам.

7) Введение в структуру системы передачи обратного канала связи, который информирует отправителя об искажениях в переданном блоке данных или об их отсутствии. Это позволяет отправителю принимать ре­шения для обеспечения безошибочной передачи блоков данных, следова­тельно, управлять процессами обмена информацией.

Системы передачи информации со структурным резервом могут быть построены как разомкнутые, не имеющие обратной связи, и как замкнутые по структуре - системы с обратной связью. В системах без об­ратной связи, помимо передачи сообщений по нескольким каналам, ис­пользуются корректирующие коды, позволяющие обнаружить и исправить искажения.

Достоверность передачи информации при достаточно простых мето­дах и средствах кодирования можно повысить, если отправитель непре­рывно будет получать информацию о принятых сообщениях и наличии в них ошибок. Такая информация может быть получена с помощью допол­нительного обратного канала, который в структурной схеме передачи формирует обратную связь. При этом передача сигналов будет осуществ­ляться по замкнутому контуру, что позволяет управлять процессами пере­дачи информации; и в соответствии с состоянием канала связи можно вво­дить необходимую информационную избыточность.

Общая структурная схема системы передачи с обратной связью при­ведена на рис.


 

Сообщение, переданное по прямому каналу связи поступает в анализа­тор приемника, который выделяет информационную часть и делает ее про­верку на наличие ошибок. В случае обнаружения искажений анализатор при­емной стороны формирует сигнал об ошибке с указанием номера искаженно­го блока, который посылается по обратному каналу. Анализатор на стороне отправителя дешифрует этот сигнал и выдает управляющий сигнал на по­вторную передачу блока. Эти процедуры повторяются, пока по обратному каналу не будет передан сигнал подтверждения. Системы передачи, функ­ционирующие по такому принципу, называют системами с решающей обрат­ной связью (РОС).

Передаваемый блок данных поступает в буфер передатчика прямого канала. В анализатор передатчика может поступить или передаваемый блок данных, или его служебная часть. Анализатор выполняет сравнение сигналов от отправителя с сигналами от получателя, принятыми по обрат­ному каналу. При их совпадении анализатор выдает разрешение на пере­дачу следующего блока данных, информируя получателя о том, что пере­дается следующий блок данных.

В случае несовпадения сигналов от отправителя и от получателя анализатор формирует управляющий сигнал на повторную передачу блока данных или другие действия отправителя по обеспечению достоверности передачи информации.

Помимо информирования отправителя о приеме его блока получатель также может передать по обратному каналу связи сообщения, что позволяет в

системах с обратной связью выполнять обмен информацией. Например, кон­трольная сумма переданного блока сравнивается с контрольной суммой этого блока, вычисленного на приемной стороне и переданной по обратному каналу.

Сигнал, информирующий отправителя о приеме блока данных без ошибок, может быть сформирован либо на передающей стороне, либо на прием ной следующим и способами:

1) Переданный по прямому каналу блок данных, который может со­держать корректирующий код, возвращается по обратному каналу в анали­затор передающей стороны. Последний сравнивает переданный и приня­тый блоки данных поразрядно. При несовпадении битов какого-либо раз­ряда анализатор формирует сигнал «ошибка», обеспечивающий повторную передачу блока данных и т.д., пока не обеспечится совпадение всех битов в переданном и принятом блоках данных.

Системы передачи, работающие по такому принципу, называют сис­темами с информационной обратной связью (НОС). Основные достоинства таких систем - простота в реализации и возможность получать статистику искажений на передающей стороне.

Однако их применение ограничивается при большом количестве по­мех, так как время передачи одного блока определяется временем передачи от первого блока, принятого с ошибками, до приема последнего, принятого без ошибок. Искажения могут возникнуть и при передаче неискаженного блока по обратному каналу.

2) Передаваемые блоки данных строятся в форме двоичных комбина­ций корректирующего избыточного кода, позволяющего обнаружить иска­жения на приемной стороне с помощью анализатора (рис. 6.3.1) путем деко­дирования корректирующего кода. Если искажения не обнаружены, то ана­лизатор посылает в передатчик обратного канала подтверждение о безоши­бочно переданном блоке. Анализатор на передающей стороне дешифрует это подтверждение и выдает управляющий сигнал на передачу следующего бло­ка данных и выдачу получателю неискаженного блока.

Достоинства систем передачи информации с РОС:

- меньшая, чем в системах с ИОС загрузка обычного канала связи; возможность организации полудуплексного обмена информацией.

Недостатком систем с РОС является отсутствие возможностей сбора информации об ошибках и их характере (одиночные, групповые) у отпра­вителя сообщений.

3)Как и в системах передачи с РОС при необнаруженных искажениях в принятом блоке по обратному каналу посылается подтверждение. В случае об­наружения искажений по обратному каналу может быть послан искаженный блок данных. Это дает возможность отправителю количественно оценивать ха­рактер искажений в переданных блоках путем статистической обработки. В со­ответствии с этим можно будет увеличивать избыточность корректирующего кода или принимать другие меры для повышения достоверности передачи ин­формации.

Системы передачи информации, функционирующие по такому прин­ципу, называют системам и с комбинированной обратной связью (КОС).

 

Лекция 6. Каналы связи.

Под каналом связи подразумевают совокупность технических и программных средств, предназначенных для передачи информации от одного источника сообщений. Разделение сигналов – это обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при которой, сигналы сохраняют свои свойства и не искажают друг друга. Используемые методы разделения каналов (РК) можно классифицировать на линейные и нелинейные (комбинационные). В большинстве случаев разделения каналов каждому источнику сообщения выделяется специальный сигнал, называемый канальным. Промодулированные сообщениями канальные сигналы объединяются, в результате чего образуется групповой сигнал. Если операция объединения линейна, то получившийся сигнал называют линейным групповым сигналом. Для унификации многоканальных систем связи за основной или стандартный канал принимают канал тональной частоты (канал ТЧ), обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300... 3400 Гц, соответствующей основному спектру телефонного сигнала. Многоканальные системы образуются путем объединения каналов ТЧ в группы, обычно кратные 12 каналам.

Частотное разделение каналов связи При частотном разделении передача информации от нескольких источников сообщений по одной линии связи осуществляется одновременно на различных частотных диапазонах..Временное разделение каналов связи При временном разделении каналов сообщения дискретизируются и передаются только их мгновенные значения, один раз за период повторения (см. рис. 7.5). Мгновенные значения каждого сообщения передаются короткими импульсами, поэтому по одной линии связи можно передавать последовательно во времени несколько сообщений. Для каждого канала связи выделяется определѐнный промежуток времени, являющийся частью периода повторения, в течение которого высылаются импульсы, модулированные информацией, передаваемой по данному каналу. Модуляция импульсов осуществляется по амплитуде, длительности или по фазе [1, 2, 10].

Достоинства временного разделения каналов связи: - использование цифрового сигнала при передаче сообщения; - возможность передачи избыточной информации для восстановления полученного сигнала; - высокая помехоустойчивость систем (отсутствуют переходные помехи нелинейного происхождения); - более простая реализация систем; - повышенная защищенность каналов от несанкционированного доступа.

 Недостатки временного разделения каналов связи: - линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо- частотной характеристик системы связи, нарушают импульсный характер сигналов; - взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на передающей и приемной сторонах.

Лекция 7. Комплекс технических средств СДТУ.

ОСНОВНЫЕ ЗАДАЧИ SCADA-СИСТЕМЫ:

· Сбор данных от датчиков и представление их оператору в удобном для него виде, включая графики изменения параметров во времени;

· Дистанционное управление исполнительными механизмами;

· Ввод заданий алгоритмам автоматического управления;

· Реализация алгоритмов автоматического контроля и управления (чаще эти задачи возлагаются на контроллеры, но SCADA-системы тоже способны их решать);

· Распознавание аварийных ситуаций и информирование оператора о состоянии процесса;

· Формирование отчетности о ходе процесса и выработке продукции.

От надежности, быстродействия и эргономичности SCADA-системы зависит не только эффективность управления технологическим процессом, но и его безопасность.

УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

Управление предприятием производится на двух уровнях:
MES (Manufacturing Execution Systems) — система управления производством продукции в реальном времени. Этот уровень служит для планирования производственных заданий для технологических процессов, построения сводных отчетов, глубокого анализа процесса (например, прогнозирование, построение энергетического и материального баланса и др.). Для этих целей также может быть использован инструментарий SCADA.

ERP (Enterprise Resource Planning) — система автоматизированного управления административно-финансовой и административно-хозяйственной деятельностью предприятия. На этом уровне используются другие специализированные системы, например, SAP R3.

ФУНКЦИИ SCADA

■ Мнемосхемы
Мнемосхема — это графическое изображение (с помощью встроенного в SCADA графического редактора) технологической схемы с визуализацией значений датчиков, состояния исполнительных механизмов и др. параметров. Для визуализации используется не только отображение значений в виде цифр и надписей, но и изменение визуальных свойств отображаемых графических объектов. Например, в емкости изменяется уровень жидкости, а ее цвет изменяется в зависимости от температуры (динамизация). Исполнительные механизмы могут не просто показывать свое состояние каким-то графическим признаком (например, цветом), но и наглядно показывать свою работу — например, вращением лопастей насоса, движением ленты конвейера и т.п. (анимация).

■ Архивы
Получаемые от контроллеров данные SCADA складывает в архивы. Предварительно данные могут быть обработаны (отфильтрованы, усреднены, сжаты и т.п.). Часто используется не регулярная запись, а запись по изменению с использованием порога чувствительности («мертвой зоны»). Длительность хранения настраивается в SCADA индивидуально для каждого параметра и может составлять до нескольких лет.

■ Тренды
Тренд — это графическое отображение изменения параметра во времени. Тренды в SCADA- системах могут показывать изменение параметра за всю длительность его хранения в архиве. Оператору предоставляется возможность изменять масштаб, как времени, так и самого параметра. В развитых системах в тренд встроены различные инструменты анализа графика, сравнения его с уставкой или другим параметром, сглаживание или фильтрация, отметки на графике событий (например, нарушение границ) или закладок для памяти и многое другое.

■ Таблицы
Зачастую технологу удобнее просматривать архивы не в графическом виде, а в виде таблиц. Обычно эти таблицы можно не только просматривать, но и экспортировать в другие системы.

■ Графики
Обычно SCADA позволяют смотреть и зависимость одних параметров от других, тоже во времени. Хотя это функция и менее востребована технологами, чем тренды.

■ Гистограммы и диаграммы
Другим распространенным способом представления параметров являются гистрограммы (столбиковые диаграммы).

■ Сообщения
Сообщения — это текстовые строки, которые информируют оператора о событиях на объекте в той последовательности, в которой эти события происходят. Они всплывают на экране или отображаются в специально выделенной для этого зоне.

■Журналы сообщений
Журналы сообщений служат для отображения списков сообщений в том порядке, как они появлялись и были сохранены в архив. Как правило, используются разные экземпляры журналов для разных зон процесса, разных категорий сообщений, разных приоритетов.

■ Контроль прав доступа
Для того, чтобы оператор мог совершить те или иные действия, ему должны быть администратором предоставлены соответствующие права — например, право управлять исполнительным механизмом, или право изменить задание регулятору. В начале смены оператор регистрируется в системе, и она предоставляет ему выполнять только те действия, которые ему разрешены администратором.

■Журнал действий оператора
Управление технологическим процессом очень ответственная задача, поэтому все действия оператора записываются для контроля в специальный журнал, который может быть проанализирован в случае нештатных ситуаций.

■ Формирование отчета
Удобная среда разработки отчетов позволяет легко и быстро подготовить отформатированные и насыщенные информацией отчеты.

 

Лекция 8. Модель передачи данных.

Характеристика и назначение ИТ передачи информации Информационные технологии основаны на реализации информационных процессов, разнообразие которых требует выделения базовых. К ним можно отнести извлечение, транспортирование, обработку, хранение, представление и использование информации. В процессе транспортирования осуществляют передачу информации на расстояние для ускоренного обмена и организации быстрого доступа к ней, используя при этом различные способы преобразования. Процесс транспортирования информации рассматривается в рамках эталонной семиуровневой модели, известной как модель OSI. Большое внимание уделено протоколам различных уровней, обеспечивающих необходимый уровень стандартизации.

5.1.3. Модель OSI При разработке и использовании сетей для обеспечения совместимости используется ряд стандартов, объединенных в семиуровневую модель открытых систем, принятую во всем мире и определяющую правила взаимодействия компонентов сети на данном уровне (протокол уровня) и правила взаимодействия компонентов различных уровней (межуровневый интерфейс). Международные стандарты в области сетевого информационного обмена нашли отражение в эталонной семиуровневой модели, известной как модель OSI (Open System Intercongtction – связь открытых систем). Физический уровень реализует физическое управление и относится к физическому каналу связи, например витой паре, по которой передается информация. Канальный уровень. На этом уровне осуществляется управление звеном сети (каналом) и реализуется пересылка кадров информации по физическому звену. Осуществляет такие процедуры управления, как определение начала и конца блока, обнаружение ошибок передачи, адресация сообщений и др. Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей. Выполняет следующие функции: маршрутизацию, фрагментацию, контроль ошибок. Транспортный уровень обеспечивает приложениям или верхним уровням стека передачу данных с той степенью надежности которая им требуется. Сеансовый уровень обеспечивает взаимодействие сторон, фиксирует, какая из сторон является активной в настоящий момент и представляет средства синхронизации сеанса. Уровень представления. Программные средства этого уровня выполняют преобразования данных из внутреннего формата передающего компьютера во внутренний формат компьютера-получателя, не меняя ее содержания. Данный уровень включает функции, относящиеся к используемому набору символов, кодированию данных и способам представления данных на экранах дисплеев или печати. Помимо конвертирования форматов на данном уровне осуществляется сжатие передаваемых данных и их распаковка. Прикладной уровень – набор протоколов, с помощью которых пользователи получают доступ к разделяемым ресурсам, таким как файлы, принтеры и т.д., уровень обычно оперирует сообщениями.

 

Лекция 9. Протоколы передачи.

Протокол ISACOM (Контроллеры ТЕКОН)

По данному протоколу происходит обмен данными между SCADA-системой и контроллерами «ТЕКОН»). Контроллеры ТЕКОН поддерживают ряд сервисов, требующих дополнительного конфигурирования.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 488; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.50.83 (0.035 с.)