Естественные и антропогенные электромагнитные поля. Воздействие на человека электромагнитных полей радиочастот. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Естественные и антропогенные электромагнитные поля. Воздействие на человека электромагнитных полей радиочастот.



Электромагнитные волны возникают при ускоренном движении электрических зарядов. Электромагнитные волны – это взаимосвязанное распространение в пространстве изменяющихся электрического (кВ/м) и магнитного полей (А/м). Совокупность этих по­лей, неразрывно связанных друг с другом, называется электромагнитным полем.

Источником электромагнитных полей промышленной частоты являются ведущие части действующих электроустановок. Длительное воздействие электромагнитного поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем. Это выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, сильных болей в области сердца, изменение кровяного давления и пульса.

Электромагнитноеполе (ЭМП) радиочастот характеризуется рядом свойств – способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом, благодаря которым ЭМП радиочастот широко используются в промышленности, науке, технике, медицине, быту.

 ЭМП радиочастот подразделяются на ряд диапазонов:

1) поля высокой частоты (ВЧ) с частотами от 30 кГц до 30 МГц и длинами волн от 104 м до 10 м;

2) поля ультравысоких частот (УВЧ) с частотами от 30 МГц до 300 МГц и длинами волн от 10 м до 1 м;

3)поля сверхвысоких частот (СВЧ) с частотами от 300 МГц до 300 ГГЦ и длинами волн от 1 м до 10-3 м.

Основными источниками ЭМП радиочастот являются телевизионные и радиолокационные станции, антенны радиосвязи, термические цехи и участки. К существенным источникам ЭМП относятся мониторы компьютеров.

Единицами ЭМП являются:

-частота f (Гц);

-напряженность электрического поля Е (В/м);

-напряженность магнитного поля H (А/м);

-плотность потока энергии I (Вт/м²).

Влияние ЭМП на организм зависит от следующих физических параметров:

-длина волны;

-интенсивность;

-режим облучения (непрерывный, прерывистый, импульсно-модулированный);

-продолжительность воздействия;

-площадь облучаемой поверхности.

Биологическое действие ЭМП радиочастот характеризуется тепловым действием и нетепловым эффектом. Под тепловым действием понимается интегральное повышение температуры тела или отдельных его частей при общем или локальном облучении. Нетепловой эффект связан с переходом электромагнитной энергии в объекте в нетепловую форму энергии (молекулярное резонансное истощение, фитохимическая реакция и др.). При длительном воздействии ЭМП возникает расстройство центральной нервной системы, происходят сдвиги эндокринно-обменных процессов, изменения состава крови. Облучение глаз может привести к помутнению хрусталика (катаракте). Наибольшей биологической активностью обладает диапазон СВЧ в сравнении с УВЧ и ВЧ.

Нормирование электромагнитного излучения радиочастотного диапазона приводится по ГОСТ 12.1.006 – 84 “ССБТ. Электромагнитные поля радиочастот. Общие требования безопасности” и СанПиН 2.2.4/2.1.8.055 – 96 “Электромагнитные излучения радиочастотного диапазона”. ЭМП радиочастот в диапазоне частот 60 кГц – 300 МГц оценивается предельно допустимой напряженностью электрического и магнитного полей и предельно допустимой энергетической нагрузкой за рабочий день. В диапазоне частот 300 МГц – 300 ГГц ЭМП оценивается плотностью потока энергии и предельно допустимой энергетической нагрузкой. Предельно допустимое значение плотности потока энергии не должно превышать 10 Вт/м² (1000 мкВт/см²).

К основным методам защиты персонала от ЭМП радиочастот относятся следующие:

-выбор рациональных режимов работы оборудования;

-ограничение места и времени нахождения работающих в ЭМП;

-защита расстоянием, т.е. удаление рабочего места от источника электромагнитных излучений;

-рациональное размещение оборудования;

-уменьшение мощности источника излучений;

-использование поглощающих или отражающих экранов;

-применение средств индивидуальной защиты (специальная одежда, выполненная из металлизированной ткани, и защитные очки).

Для предупреждения ранней диагностики и лечения нарушений в состоянии здоровья работника, связанных с воздействием ЭМП радиочастот, осуществляются лечебно-профилактические мероприятия, включающие предварительные и периодические медицинские осмотры.

Методы пожаротушения.

Рассмотрим основные способы тушения пожаров и приме­няемые при этом огнегасительные вещества. Способы и приемы прекращения горения в условиях пожара основаны на:

а) прекращении доступа в зону горения окислителя (кислорода воздуха);

б) охлаждении зоны горения ниже температуры самовоспламенения с помощью химической пены;

в) механическом срыве пламени сильной струей газа или воды.

Огнегасителъными называют вещества, которые при введении в зону сгорания прекращают горение.

 Основные огнегасящие вещества и материалы – это вода и водяной пар, химическая и воздушно-механическая пены, водные растворы солей, негорю­чие газы, галоидоуглеводородные огнегасительные составы и су­хие огнетушащие порошки.

Наиболее распространенным веществом, применяемым для тушения пожара, является вода. Она снижает температуру очага горения.

Водяной пар можно применять для тушения ряда твердых, жидких и газообразных веществ. Наибольший эффект от применения водяного пара достигается в помещениях, объем которых не превышает 500 м3, а также при пожарах, возникших на небольших открытых площадках.                    ;

Химические и воздушно-механические пены применяют для тушения твердых и жидких веществ, не взаимодействующих с водой. Одной из основных характеристик этих пен является их кратность, т.е. отношение объема пены к объему ее жидкой фазы.

Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии пенообразователя. При ту­шении пожаров пеной покрывают горящие вещества, препятст­вуя тем самым поступлению горючих газов и паров к очагу го­рения.

Применение инертных и негорючих газов (аргон, азот, галоидированные углеводороды и др.) основано на разбавлении воздуха и снижении в нем концентрации кислорода до значений, при которых горение прекращается.

К числу жидких огнегасительных ве­ществ относятся водные растворы некоторых солей, напри­мер, бикарбоната натрия, хлористого кальция, хлористого аммо­ния, аммиачно-фосфорных солей и др. Их действие при туше­нии пожара основано на образовании на поверхности горящего материала изолирующих пленок, возникающих при испарении из растворов солей воды.

Порошковые огнегасительные составы препятствуют поступлению кислорода к поверхности горящего материала.

Различают ручные огнетушители (до 10 л) и передвижные (свыше

25 л). В зависимости от вида огнегасительного средства, находящегося в огнетушителях, они делятся на жидкостные, углекислотные, химические пенные, воздушно-пенные, хладоновые, порошковые и комбинированные.

К автоматическим установкам водяного пожаротушения относятся спринклерные и дренчерные установки. Отверстия, через которые вода поступает в помещение при пожаре, запаяны легкоплавкими сплавами.

Пожарный датчик (извещатель) реагирует на появление дыма (дымовой извещатель), на повышение температуры воздуха в помещении (тепло­вой извещатель), на излучение открытого пламени (световой из­вещатель) и т.д. и подает сигнал включения системы подачи огнетушащих веществ, которые подаются к очагу загорания.

Билет №3



Поделиться:


Последнее изменение этой страницы: 2021-03-10; просмотров: 68; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.39.74 (0.006 с.)