Создание и вживление 3d-черепа 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Создание и вживление 3d-черепа



В апреле 2016 года стало известно о том, что южнокорейские хирурги смогли напечатать на 3D-принтере модель черепа и использовать его на живом человеке.

В больницу при университете Чунан (Chung-Ang University) в Южной Корее поступила 60-летняя пациентка с жалобой на внезапную головную боль. У нее диагностировали субарахноидальное кровоизлияние. После тщетных попыток остановить смертельное кровотечение врачи приняли решение удалить часть черепа, чтобы уменьшить давление на мозг, вызванное его отеком.

В Южной Корее успешно пересадили напечатанный на 3D-принтере череп

 

Во время операции в месте удаленной части черепа возникла недостаточность кровоснабжения мозга, в результате чего потребовалась пересадка черепа. В итоге было принято решение об имплантации трехмерной модели черепной коробки.

Доктора больницы привлекли специалистов Корейского института промышленных технологий в провинции Канвондо. Они сканировали черепную коробку пациентки при помощи компьютерной томографии и создали точную трехмерную копию органа. При помощи специального оборудования модель была распечатана. Ее изготовили из чистого титана, который принято считать одним из лучших материалов для создания имплантов. Этот металл является легким, прочным и инертным, он имеет низкую вероятность отторжения организмом.

Операция по вживлению напечатанного на 3D-принтере черепа завершилась успешно. Профессор отделения нейрохирургии университета Чунан Квон Чжонтек (Kwon Jeong-tek) отметил, что создание синтетических имплантов и металлических пластинок, используемых для соединения костных отломков, давно применяется для замены элементов черепа человека, однако данная технология всегда была несовершенной. [11]

ПО для 3D-печати в медицине

На вебинаре, который провела организация Society for Imaging Informatics in Medicine (SIIM) в конце марта 2016 года, доктор Университета Юты Джастин Крамер (Justin Cramer) перечислил основные программные продукты, которые могут использоваться для трехмерной печати в медицине.

· Horos. Это бесплатная программа для просмотра рентгеновских снимков, а также изображений, полученных в результате магнитно-резонансной томографии и компьютерной томографии. Этот продукт с открытым исходным кодом имеет достаточно продвинутую функциональность в части 3D-рендеринга, в том числе инструмент визуализации поверхностей. Файлы могут быть экспортированы в формат STL для вывода на 3D-печать. Недостатком Horos является отсутствие возможности сегментации изображения — разделения на пиксели с целью упрощения и/или изменения представления снимка, чтобы его было легче анализировать, сказал Крамер.

Напечатанный на 3D-принтере протез руки

 

 

· Blender. Это приложение также имеет открытый исходный код, а его одним из главных достоинств является очень активное интернет-сообщество, которое постоянно разрабатывает новые дополнения для этого продукта. Он функциональнее Horos, но труднее в освоении, подмечает Джастин Крамер.

· SketchUp. Программа позволяет моделировать различные трехмерные объекты и имеет достаточно широкие возможности. Для Крамера наибольшую пользу представляет функция конвертирования STL-файлов в формат Collada, с которым совместимо приложение Apple iBooks. SketchUp когда-то распространялся бесплатно, но к апрелю 2016 года он стоит $695. Образовательные учреждения (или те, у кого есть доступ к электронной почте в домене.edu) могут бесплатно скачать специальную версию программы.

· Materialise. Сам Университет Юты, известный своими достижениями в области трехмерной печати, пользуется САПР бельгийской компании Materialise. Речь идет о программе для обработки изображений Mimics и продукте 3-matic. Последний позволяет изменять геометрию, перестраивать сетку и создавать трехмерные текстуры, легкие конструкции и конформные структуры на уровне STL, готовя компьютерные модели для 3D-печати.

При выборе софта для 3D-принтеров Джастин Крамер рекомендует руководствоваться простым правилом: для начинающих подойдут бесплатные варианты, но если планируется создавать точные анатомические модели для профессионального использования, то лучше приобрести мощный платный продукт, поскольку с его помощью можно создавать более качественную модель.[12]

Разработки Университета Юты: дешёвая 3D-печать методом наплавления

В конце марта 2016 года медицинская организация Society for Imaging Informatics in Medicine (SIIM) провела вебинар, в ходе которого радиологи из Университета Юты рассказали о возможностях своей новой лаборатории для 3D-печати. Ее особенностью является использование недорогого оборудования.

Для трехмерной печати было выбрано моделирование методом наплавления (FDM). Технология предполагает создание трехмерных объектов за счет нанесения последовательных слоев материала, повторяющих контуры цифровой модели.

Трехмерная модель позвоночника (слева), напечатанная на 3D-принтере

 

По словам доктора наук из Университета Юты Эдварда Квигли (Edward Quigley), метод наплавления является универсальным и дешевым способом создания объемных объектов, именно поэтому его часто используют для разработки медицинских 3D-принтеров начального уровня.

В Университете Юты сконструировали на основе FDM дешевый принтер, позволяющий печатать хрупкие и сложные анатомические модели, применяемые для образовательных целей. Для получения более точных и наглядных прототипов специалисты добавили в оборудование режимы цветной печати. Однако несмотря на все достижения процесс моделирования остается нелегким: очень часто происходит большой сбой, в результате которого 24-часовая печать объекта заканчивается лишь кучей расплавленного пластика, сетует Квигли.

Впрочем, были и успешные эксперименты в университете. Один из них изображен на иллюстрации выше. На картинке слева можно видеть напечатанную на 3D-принтере нейлоновую модель, демонстрирующую шейные позвонки, позвоночные артерии, дуральный мешок и спинной мозг. Справа показана виртуальная версия, на основе которой создавался физический прототип.

Эдвард Квиглин отметил, что 3D-печать может использоваться для проведения исследований, интраоперационного планирования операций, в сердечно-сосудистой и легочной хирургии. Такие технологии особенно полезны в травматологии, а также могут применяться, к примеру, для создания направляющей для биопсийной иглы или направляющей втулки для сверления зубов, добавил он.[13]

 



Поделиться:


Последнее изменение этой страницы: 2021-03-09; просмотров: 119; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.191.22 (0.006 с.)