Понятия о методах и средствах измерений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятия о методах и средствах измерений



 

Под методом измерений понимают специальный прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

Наибольшее распространение получила  классификация по общим приемам получения результатов измерения. Согласно этому признаку, измерения делятся на прямые, косвенные, совместные и совокупные. Целью такого деления является удобство выделения методических погрешностей измерений, возникающих при определении результатов измерений.

Прямыми  называют измерения,при которых искомое значение величины находят непосредственно из опытных данных (например, измерение массы на весах, температуры- термометром, длины- с помощью линейных мер).

Косвенными называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, которые подвергаются прямым измерениям (например, определение электрического сопротивления по результатам измерения падения напряжения и силы тока).

Совокупными называются проводимые одновременно измерения нескольких одноименных величин, при которых их искомые значения находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для установления зависимости между ними. (как видно из приведенных определений совместных и совокупных измерений, эти два вида измерений весьма близки друг к другу; в обоих случаях искомые значения находятся в результате решения системы уравнений, коэффициенты в которых получены путем прямых измерений; отличие состоит в том, что при совместных измерениях одновременно определяются несколько одноименных величин, а при совокупных- разноименных).

Косвенные, совместные и совокупные измерения объединяются одним принципиально важным общим свойством: их результаты определяются расчетом по известным функциональным зависимостям между измеряемыми величинами и величинами, подвергаемыми прямым измерениям. Различие между этими видами измерений заключается только в виде функциональной зависимости, используемой при расчетах. При косвенных измерениях она выражается одним уравнением в явном виде, при совместных и совокупных- системой неявных уравнений. Поэтому уже неоднократно высказывались мнения о сокращении приведенной выше классификации.

 По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными называются измерениями какой- либо ФВ, выполненные одинаковыми по точности СИ и в одних и тех же условиях. Соответственно неравноточными называются измерения ФВ, выполненные различными по точности СИ и (или) в разных условиях. Методика обработки результатов равноточных и неравноточных измерений различна.

В зависимости от числа измерений, проводимых во время эксперимента, различают одно- и многократные измерения. Однократными  называются измерения, выполненные один раз, к многократным относятся измерения одного и того же размера ФВ, следующие друг за другом. Их проводят с целью уменьшения случайной составляющей погрешности.

По  отношению к изменению измеряемой величины измерения делятся на статические и динамические. Целью данной классификации является возможность принятия решения о том, нужно ли при конкретных измерениях учитывать скорость изменения измеряемой величины или нет. Погрешности, вызываемые влиянием скоростей изменения измеряемой величины, называют динамическими.

К  статическим  относятся измерения ФВ, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Динамические измерения – это измерения изменяющейся по размеру ФВ. Признаком, по которому измерения относят к статическому или динамическому, является динамическая погрешность приданной скорости или частоте изменения измеряемой величины и заданных динамических свойствах СИ. Предположим, что она пренебрежимо мала (для решаемой измерительной задачи). В этом случае измерение можно считать статическим. При невыполнении указанных требований оно является динамическим.

В зависимости от метрологического назначения измерения делятся на технические и метрологические. Технические измерения проводятся рабочим СИ. Метрологические  измерения выполняются с при помощи эталонов воспроизведения единиц ФВ для передачи их размера рабочим СИ.

При метрологических измерениях в обязательном порядке учитываются погрешности, а при технических- принимается наперед заданная погрешность, достаточная для решения данной практической задачи. Поэтому при технических измерениях нет необходимости определять и анализировать погрешности получаемых результатов. Технические измерения являются наиболее массовым видом.

В зависимости от выражения результатов измерений последние подразделяются на абсолютные и относительные. Абсолютное  измерение основано на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Понятие «абсолютное измерение» применяется как противоположное понятию «относительное измерение» и рассматривается как определение величины в ее единицах.

Относительное измерение- это измерение отношения определяемой величины к одноименной. Например: измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованном в качестве образцовой меры активности. Относительные измерения при рабочих равных условиях могут быть выполнены более точно, чем абсолютные, поскольку в суммарную погрешность не входит погрешность меры величины. 

Прямые измерения величин можно производить следующими методами: метод непосредственной оценки – значение величины определяют непосредственно по отсчетному устройству измерительного прибора;измерение массы- циферблатными весами, силы электрического тока – амперметром. Метод сравнения с мерой- измеряемую величину сравнивают с величиной, воспроизводимой мерой, например, измерение массы рычажными весами с уравновешиванием гирями. Нулевой метод- метод сравнения с мерой, когда результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например, измерение электрического сопротивления мостом с полным его уравновешиванием.

Существует ряд других методов (дифференциальный метод, метод сравнения, метод заменения), с которыми мы ознакомимся позже.

Ранее я приводила понятие средства измерения. Теперь приведу это понятие другими словами, в более широком контексте.

СИ- это средство измерения, предназначенное для измерений, вырабатывающее сигнал (показание), несущий информацию о значении измеряемой величины, или воспроизводящее величину заданного (известного) размера. СИ представляет собой конструктивно законченные изделия (мера, измерительный прибор, измерительная установка и т. п.), предназначенные для измерений и осуществляющие одну из двух основных функций: воспроизведение физической величины заданного размера или преобразование измерительного сигнала одного вида (размера) в другой, например в форму, позволяющую наблюдателю воспринимать значение измеряемой величины. Система воспроизведения единиц физических величин и передачи информации об их размерах всем без исключения СИ в стране составляет техническую базу обеспечения единства измерений.

СИ, обеспечивающее воспроизведение единицы величины с максимально возможной точность и ее хранение для передачи размера другим СИ, выполненное по особой спецификации и официально утвержденное, называется эталоном. Эталон, утвержденный в качестве исходного для всей страны, называют государственным первичным эталоном. В целях проведения различных метрологических работ создаются вторичные эталоны: эталоны-свидетели, эталоны-копии, эталоны-сравнения, рабочие эталоны.                                                     

Эталоны-свидетели предназначены для поверки сохранности и неизменности государственного эталона и для замены его в случае порче или утраты. Эталоны-сравнения применяются для сличения эталонов, которые по каким –либо причинам не могут непосредственно сличаться друг с другом. Эталоны-копии используются для передачи размеров единиц рабочим эталонам.

Наиболее распространенными эталонами являются  рабочие эталоны (сотни тысяч единиц). Рабочие эталоны подразделяются по разрядам (1,2,3, иногда-4). От рабочих эталонов низшего разряда размер передается рабочим средствам измерения (РСИ). РСИ обладает различной точностью измерений: точные РСИ при поверке получают размер от рабочих эталонов 1-го разряда; менее точные- от эталонов низшего 3-го или 4-го разряда. С помощью РСИ выполняются измерения при контроле качества продукции, осуществляется получение информации, необходимой для управления технологическими процессами, контролируются характеристики инструмента и состояние оборудования.

 

 

     

 

 


                        Государственный эталон величины

                       Рабочий эталон 1-го разряда

 


                                 Рабочий эталон 2-го разряда

 


                                        Рабочий эталон 3-го разряда         

Рабочие средства измерений

             
     


                                  Объекты измерений

Это рисунок системы передачи размера единиц величины.

 

Передача информации о размере единиц осуществляется методами непосредственного сличения, а также сличения с помощью компаратора. Компаратор- измерительный прибор для сравнения измеряемой величины с эталоном (равноплечные весы, электроизмерительные потенциометры и другие приборы сравнения). Непосредственное сличение применяют, как правило, для менее точных мер, например штриховых мер длины- линеек, рулеток, а также мер вместимости- бюреток, пипеток, мерных колб и т.п. Для более точной поверки используют приборы сравнения- компарирующие устройства.

Процесс передачи размера единиц осуществляется при поверке и калибровке СИ. Поверка и калибровка представляют собой совокупность операций, выполняемых с целью определения и подтверждения соответствия СИ документально установленным техническим требованиям.

Суть поверки средств измерений заключается в нахождении погрешности СИ и установлении его пригодности к применению. По содержанию поверка СИ- это совокупность операций, выполняемых органами государственной метрологической службы или другими уполномоченными организациями с целью определения и подтверждения соответствия СИ установленным техническим требованиям. Процедура поверки регламентируется нормативными документами.

Поверка носит обязательный характер и проводится в отношении СИ, которые применяются в установленных законом РФ «Об обеспечении единства измерений» сферах: здравоохранение, охрана окружающей среды, обеспечение обороны государства и др.

Калибровка средств измерений – комплекс операций, осуществляемых с целью определения и подтверждения действительных значений характеристик и (или) пригодности к применению СИ., не подлежащих государственному метрологическому контролю и надзору.

Соподчинение государственного эталона, вторичных эталонов и рабочих средств измерений определено государственной поверочной схемой.

Поверочная схема - это утвержденный документ, устанавливающий средства, методы и точность передачи размеров единиц от государственного эталона рабочим средствам измерений.

Различают государственные и локальные поверочные схемы.

Государственные поверочные схемы- определяют государственными стандартами и распространяются на все виды СИ данного вида.

Локальные поверочные схемы предназначены для метрологических органов министерств и метрологических служб юридических лиц и должны соответствовать требованиям соподчиненности, определяемой государственной поверочной схемой.

Важное место в воспроизведении единиц величин, характеризующих свойства и состав веществ и материалов, занимают стандартные образцы веществ и материалов.

В качестве стандартных образцов принято понимать образцы веществ или материалов, чей химический состав или физические свойства типичны для данной группы веществ или материалов, которые определены с необходимой точностью, отличаются высоким постоянством и удостоверены сертификатом.

По существу, стандартные образцы служат для поддержания единства измерений, иначе говоря, являются средствами измерений.

Стандартные образцы используют для градуировки, поверки и калибровки химического состава и свойств материалов- механических, тепловых, оптических и др. Стандартные образцы как меры с установленной погрешностью применяются непосредственно для контроля качества продукции и сырья путем сличения.

 

Элементы процесса измерений

Измерение- сложный процесс, включающий в себя взаимодействие целого ряда его структурных элементов. К ним относятся: измерительная задача, объект измерения, принцип, метод и средство измерения и его модель, условия измерения, субъект измерения, результат и погрешность измерения. Процесс измерения протекает по двум параллельным ветвям, содержащим соответствующие друг другу элементы, относящиеся к реальности и ее отражению, или познанию. Элементы обеих ветвей, неразрывно связанных между собой, соответствуют друг другу по типу «реальность- отражение

 (модель).

Первым начальным элементом каждого измерения является его задача (цель). Задача любого измерения заключается в определении значения выбранной (измеряемой) ФВ с требуемой точностью в заданных условиях. Постановку задачи измерения осуществляет субъект измерения - человек. При постановке задачи конкретизируется объект измерения, в нем выделяется измеряемая ФВ и определяется (задается) требуемая погрешность измерения.

Объект измерения- это реальный физический объект, свойства которого характеризуются одной или несколькими измеряемыми ФВ. Он обладает многими свойствами и находится в многосторонних и сложных связях с другими объектами. Субъект измерения - человек принципиально не в состоянии представить себе объект целиком, во всем многообразии его свойств и связей. Вследствие этого взаимодействия субъекта с объектом возможно только на основе математической модели объекта. Математическая модель объекта измерения- это совокупность математических символов (образов) и отношений между ними, которая адекватно описывает интересующие субъекта свойства объекта измерения.

Модель объекта измерения должна удовлетворять следующим требованиям:

- погрешность, обусловленная несоответствием модели объекту измерения, не должна превышать 10% предельно допускаемой погрешности измерения;

- составляющая погрешности измерения, обусловленная нестабильностью измеряемой ФВ в течение времени, необходимого для проведения измерения, не должна превышать 10% предельно допускаемой погрешности.

Если выбранная модель не удовлетворяет этим требованиям, то следует перейти к другой модели объекта измерений.

Априорная информация, т.е. информация об объекте измерения, известная до проведения измерения, является важнейшим фактором, обуславливающим его эффективность. При полном отсутствии этой информации измерение в принципе невозможно, так как неизвестно, что же необходимо измерить, а следовательно, нельзя выбрать нужные средства измерений. При наличии априорной информации об объекте в полном объеме, т.е. при известном значении измеряемой величины, измерения попросту не нужны. Указанная информация определяет достижимую точность измерений и их эффективность.  

Измеряемая величина определяется как параметр принятой модели, а ее значение, которое можно было бы получить в результате абсолютно точного эксперимента, принимается в качестве истинного значения данной величины. Идеализация, принятая при построении модели измерения, обуславливает несоответствие параметра модели исследуемому свойству объекта. Это несоответствие называют  пороговым. Обычно на практике из-за трудности оценивания пороговое несоответствие стремятся сделать пренебрежимо малым.

Модель объекта измерения необязательно должна быть математической. Ее характер должен определяться видом и свойствами объекта измерений, а также целью измерения. Моделью может служить любое приближенное описание объекта, которое позволяет выделить параметр модели, являющийся измеряемой величиной и отражающий то свойство измерений, которое необходимо для решения измерительной задачи. Модель должна достаточно хорошо отражать две группы свойств (ФВ) объекта измерений: определяемые при измерении и влияющие на результат измерений.

В большинстве практических инженерных задач модели объектов измерений достаточно очевидны и, как правило, несложны. Объект измерения характеризуется набором свойств и описывающих их ФВ. Одна из них является измеряемой величиной. Измеряемая величина- это ФВ, подлежащая определению в соответствии с измерительной задачей.

При планировании современных измерений требуется введение более конкретных понятий, определяемых целями измерений, чем весьма общего понятия «физическая величина». В настоящее время под измеряемой величиной понимается параметр или функционал параметра модели объекта измерений, отражающий то его свойство, количественную оценку которого необходимо получить в результате измерений. Измеряемая величина всегда имеет размерность определенной ФВ, но представляет собой некоторую ее конкретизацию, обусловленную свойствами объекта измерений, которые связаны с поставленной целью измерений.

Измерительная информация, т.е. информация о значениях измеряемой ФВ, содержится в измерительном сигнале. Измерительный сигнал - это сигнал, содержащий количественную информацию об измеряемой ФВ. Он поступает на вход СИ, при помощи которого преобразуется в выходной сигнал, имеющий форму, удобную либо для непосредственного восприятия человеком восприятия человеком (субъектом измерения), либо для последующей обработке и передачи. Субъект измерения осуществляет выбор принципа, метода и средства измерений.

Принцип измерений- совокупность физических принципов, на которых основаны измерения, например, эффект Доплера для измерения скорости.

Метод измерений- это прем или совокупность приемов сравнения измеряемой ФВ с ее единицей в соответствии с реализованным принципом измерения. Метод измерения должен по возможности иметь минимальную погрешность и способствовать исключению систематических погрешностей или переводу их в разряд случайных.

Методы измерения можно классифицировать по различным признакам. Известна классификация по основным измерительным операциям. Она тесно связана с элементарными СИ, реализующими эти операции.

Наиболее разработанной является классификация по совокупности приемов использования принципов и средств измерений. По этой классификации различают  метод непосредственной оценки и методы сравнения. Эти устоявшиеся в литературе названия не совсем удачны, поскольку наводят на мысль о возможности измерения без сравнения

 

Метод непосредственной оценки

 

 

Методы измерений

.

Методы сравнения

             
   
     

 


Замещения

     


Дифференциальный

             
 
 


Совпадений

                     
 
   


Нулевой

 

 


[ Рисунок-таблица]: Классификация методов измерения

 

Сущность метода непосредственной оценки состоит в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) средств измерений, которые заранее проградуированы в единицах измеряемой величины или единицах других величин, от которых она зависит. Это наиболее распространенный метод измерения. Его реализуют большинство средств измерений.

Простейшими примерами метода непосредственной оценки могут служить измерения напряжения электромеханическим вольтметром магнитоэлектрической системы или частоты импульсной последовательности методом дискретного счета, реализованным в электронно-счетном частотомере.

Другую группу образуют методы сравнения: дифференциальный, нулевой, совпадений, замещения. К ним относятся все те методы, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Следовательно, отличительной особенностью этих методов сравнения является непосредственное участие мер в процессе измерения.

При  дифференциальном методе измеряемая величина Х сравнивается непосредственно или косвенно с величиной Хм, воспроизводимой мерой. О значении величины Х судят по измеряемой прибором разности дельта Х= Х- Хм  и по известной величине Хм, воспроизводимой мерой. Следовательно, Х= Хм + дельта Х. При дифференциальном методе производится неполное уравновешивание измеряемой величины. Он сочетает в себе часть признаков метода непосредственной оценки и может дать весьма точный результат измерения, если только измеряемая величина и величина, воспроизводимая мерой, мало отличаются друг от друга. Например, если разность этих двух величин составляет 1% и измеряется с погрешностью до 1%, тем самым погрешность измерения искомой величины уменьшается до 0,01% (если не учитывать погрешность меры).

Примером дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большей точностью, а другое представляет собой искомую величину.

Нулевой метод является разновидностью дифференциального метода. Его отличие состоит в том, что результирующий эффект сравнения двух величин доводится до нуля. Это контролируется специальным измерительным прибором высокой точности- нуль -индикатором. В данной случае значение измеряемой величины равно значению, которое воспроизводит мера. Высокая чувствительность нуль- индикаторов, а также выполнение меры с высокой точностью позволяет получить малую погрешность измерения.

Пример нулевого метода- взвешивание на весах, когда на одном плече находится взвешиваемый груз, а на другом- набор эталонных грузов. Другой пример- измерение сопротивления с помощью уравновешенного моста.

Метод замещения заключается в поочередном измерении прибором искомой величины и выходного сигнала меры, однородного с измеряемой величиной. По результатам этих измерений вычисляется искомая величина. Поскольку оба измерения производятся одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, погрешность результата измерения уменьшается в значительной мере. Так как погрешность прибора неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Пример метода замещения- измерение большого электрического активного сопротивления путем поочередного измерения силы тока, протекающего через контролируемый и образцовый резисторы. Питание цепи при измерениях должно осуществляться от одного и того же источника постоянного тока. Выходное сопротивление источника тока и измерительного прибора- амперметра должно быть очень мало по сравнению с измеряемыми сопротивлениями.

При методе совпадений разность между измеряемой величиной, воспроизводимой мерой, определяют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко используется в практике неэлектрических измерений. Примером может служить измерение длины при помощи штангенциркуля с нониусом. Примером использования данного метода в электрических измерениях является измерение частоты вращения тела посредством стробоскопа.

Метод измерений реализуется в средстве измерений - техническом средстве, используемом при измерениях и имеющем нормированные метрологические свойства (ГОСТ 16263-70). Такое определение не совсем удачно. По сути дела, под СИ следует понимать техническое средство, предназначенное для измерений и позволяющее решать измерительную задачу путем сравнения измеряемой величины с единицей или шкалой ФВ.

Средство измерений является обобщенным понятием, объединяющем самые разнообразные конструктивно законченные устройства, которые обладают одним из двух признаков:

- вырабатывают сигнал (показание), несущий информацию о размере (значении) измеряемой величины;

-  воспроизводят величину заданного (известного) размера.

Объединение технических средств по этим двум признакам сделано только из соображений целесообразности общего метрологического анализа, удобства изложения и регламентации метрологических требований и правил, единых для всех видов СИ.

При использовании СИ весьма важно знать степень соответствия выходной измерительной информации истинному значению определяемой величины. Для ее установления введено правило, по которому требуется нормировать метрологические характеристики всех средств измерений. Метрологические характеристики - это характеристики свойств СИ, которые оказывают влияние на результат измерений и его погрешности и предназначены для оценки технического уровня и качества СИ, а также определения результатов измерений и расчетной оценки характеристик инструментальной составляющей погрешности измерений.

Средство измерений входит в обе ветви структуры измерения. В реальности оно взаимодействует с объектом измерений, в результате чего появляется входной (для СИ) сигнал и отклик на него- выходной сигнал, подлежащий обработке с целью нахождения результата измерений и оценки его погрешности. В области отражений СИ описывается моделью, необходимой для эффективной обработки опытных данных. Эта модель представлена совокупностью его метрологических характеристик (см. выше).

В процессе измерений важную роль играют условия измерения - совокупность влияющих величин, описывающих состояние окружающей среды и средства измерений. Влияющая величина— это физическая величина, не измеряемая данным СИ, но оказывающая влияние на его результаты.

Изменение условий приводит к изменению состояния объекта измерения. Это в свою очередь определяет влияние условий измерения на выделенную ФВ и через нее – на измеряемую величину и отклонение значения действительной величины от той, что была определена при формировании измерительной задачи. Влияние условий измерения на СИ проявляется в изменение его метрологических характеристик. При этом та часть погрешности измерения, которая возникает из-за изменения условий, называется дополнительной погрешностью.

В соответствии с установленными для конкретных ситуаций диапазонами значений влияющих величин различают нормальные, рабочие и предельные условия измерений. Нормальные условия измерений – это условия, при которых влияющие величины имеют нормальные или находящиеся в пределах нормальной области значения. Нормальная область значений влияющей величины - это область, в пределах которой изменением результата измерений под воздействием влияющей величины можно пренебречь в соответствии с установленными нормами точности. Нормальные условия измерений задаются в нормативно- технической документации на СИ. 

 



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 387; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.131.72 (0.056 с.)