Лекция: Биологические мембраны. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция: Биологические мембраны.



КАРАГАНДИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

КАФЕДРА – медицинской биофизики и информатики

Лекция: Биологические мембраны.

Структура, свойства и пути их изучения.

 

ПО ООD 012 МВ 1112 - МЕДИЦИНСКОЙ БИОФИЗИКЕ

ДЛЯ СПЕЦИАЛЬНОСТИ: 051301 – «ОБЩАЯ МЕДИЦИНА»

051302 – «СТОМАТОЛОГИЯ»

КУРС – 1

Продолжительность 50 минут

Составитель:

 доцент, к.б.н.

 ____________ И.М. Риклефс

 

Караганда 2007 г.

 


Утверждена на заседании кафедры

Протокол №_____

от "____"__________200___г

Зав.кафедрой доцент       ______________ Б.К. Койчубеков


 

Цель лекции. Рассмотреть роль и функции биологических мембран в жизнедеятельности клетки и организма в целом. Определить основные пути изучения физико-химических свойств мембран.

План лекции

1.Основные свойства мембран и их функции

2. Химический состав мембран

3.Физические свойства липидов. Поведение липидов в водных растворах.

3.1. Модельные мембраны

4.Подвижность углеводородных цепей фосфолипидных молекул в липидном бислое мембран

5. Подвижность молекулярных компонентов

в мембране


Биологическими мембранами называются функциональные структуры клеток толщиной в несколько молекулярных слоёв, ограничивающие цитоплазму и большинство внутриклеточных структур, а также образующие единую внутриклеточную систему канальцев, складок и замкнутых полостей.

Толщина биологических мембран редко превышает 10 нм, однако, вследствие сравнительно плотной упаковки в них основных молекулярных компонентов (белки и липиды), а также большой общей площади клеточных мембран они составляют более половины массы сухих клеток.

Таким образом, биологические мембраны являются одним из первых и наиболее универсальных типов надмолекулярных структур в живой природе. Биологические мембраны – надмолекулярные динамические системы, протяжённость которых в двух измерениях значительно превосходит их толщину. Однако, все механизмы, ответственные за биологическую функциональность мембраны, локализованы именно в её толще.

Таким образом, основная задача заключается в том, чтобы, опираясь на общие представления о структуре и функциях мембран, выявить молекулярно-биологические основы их структурного и функционального разнообразия.

Успехов в исследовании мембран удалось достичь благодаря сравнительному изучению мембран из множества разнообразных организмов. Бактериальные клетки имеют довольно простую наружную оболочку, содержащую одну или две мембраны, которые можно модифицировать генетически или путем изменения условий роста клеток. Вирусы с оболочкой внедряются в клетки животных благодаря слиянию с плазматической мембраной последних и высвобождаются из клетки-хозяина, отпочковываясь от нее. Изучение созревания вирусных белков позволяет узнать много нового о процессах биосинтеза мембранных белков.

Основными проблемами, решаемыми на настоящее время биофизикой мембран являются:

1. Молекулярное строение мембран, динамические свойства мембранной структуры, определяющие её функциональность.

2. Роль мембраны как системы, обеспечивающей транспорт веществ из клетки в клетку. Основная задача состоит в раскрытии молекулярной природы активного и пассивного транспорта и функциональности строения мембраны, определяющей транспорт. Иными словами, проблема сводится к установлению связи структуры и функции.

3. Изучение физической сущности возбудимости в мембран. Перемещение ионов сквозь мембрану определяет биоэлектрические явления – возникновение биопотенциалов, генерацию и распространение нервного импульса.

4. Изучение биоэнергетики мембран. С одной стороны, сюда относится конверсия энергии АТФ в работу, производимую при активном транспорте и генерации биопотенциалов, с другой, - образование АТФ в процессах окислительного формирования, происходящего, в частности, в биоэнергетических мембранах митохондрий. Биоэлектрические процессы катализируются ферментативной системой, локализованной в мембране. Как детальный механизм действия этой системы, так и характер и физический смысл её локализации представляют первостепенный интерес.

5. Физика процессов рецепции.

 

 

ХИМИЧЕСКИЙ СОСТАВ МЕМБРАН

 

Известно, что основными химическими соединениями входящими в состав мембран являются липиды и белки (слайд 3).

Липиды мембран

Мембранные липиды чрезвычайно разнообразны. Причины этого пока не ясны, хотя становится все более очевидно, что, по-видимому, связано это с тем разнообразием функций, которые липиды выполняют в мембранах. Но, конечно, главная функция мембранных липидов состоит в том, что они формируют бислойный матрикс, с которым взаимодействуют белки. Основные классы липидов это – глицерофосфатиды.

Это наиболее распространенные липиды. Одна из гидроксильных групп глицерола связана с полярной группировкой, содержащей фосфат, а две другие - с гидрофобными остатками. Природные фосфолипиды, как правило, имеют D-конфигурацию.

У большинства фосфоглицеридов фосфатная группа обычно связана с какой-либо из групп (холиновой, этаноламиновой, миоинозитольной, сериновой и глицерольной (слайд 4).

Жирные кислоты почти всегда содержат четное число атомов углерода в пределах от 14 до 24. Наиболее распространены кислоты С16, С18 и С20. Степень ненасыщенности может быть разной, но чаще всего встречаются ненасыщенные кислоты 18:1, 18:2, 18:3 и 20:4 (слайд 6,7).

Роль липидов как элементов сохраняющих стабильность мембраны, связана прежде всего со свойством амфифильности таких молекул.

Амфифильными эти молекулы называют потому, что они состоят из двух частей, различных по своей растворимости в воде: полярной “головки”, обладающей высоким сродством к воде, т. е. гидрофильной, и “хвоста” образуемого неполярными углеводородными цепями жирных кислот; эта часть молекулы обладает низким сродством к воде, т. е. гидрофобна (слайд 5,7). С химической точки зрения фосфолипид состоит из четырёх частей: глицерина, двух жирных кислот с длинной углеводородной цепью, фосфорной кислоты и особой для каждого фосфолипида группы, которую мы будем называть характеристической группой.

Примером амфифильной молекулы может служить молекула фосфатидилэтаноламина, структура которой показана слайде 8. Как и другие фосфолипиды, фосфатидилэтаноламин, в химическом отношении представляет собой сложные эфиры трехатомного спирта глицерина с двумя жирными кислотами; к третьей гидроксильной группе присоединен ортофосфат, а к нему - небольшая органическая молекула, характерная для каждого вида фосфолипидов.

Фосфолипиды различаются как составом жирных кислот, так и структурой характеристической группы. В фосфатидилэтаноламине такой группой является остаток этаноламина. В других фосфолипидах такой группой может Фосфолипиды различаются как составом жирных кислот, так и структурой характеристической группы. В фосфатидилэтаноламине такой группой является остаток этаноламина. В других фосфолипидах такой группой может быть остаток холина, серина и другие полярные молекулы.

Белки мембран

Белки мембран принято делить на интегральные и периферические (слайд 9). Интегральные белки имеют обширные гидрофобные участки на поверхности и нераствориммы в воде. С липидами мембран они связаны гидрофобными взаимодействиями и частично погружены в толщу липидного бислоя, а зачастую и пронизывают бислой, оставляя на поверхности сранительно небольшие гидрофильные участки. Отделить эти белки от мембраны удается только с помощью детергентов, типа додецилсульфата или солей желчных кислот, которые разрушают липидный слой и переводят белок в растворимую форму (солюбилизируют его) образуя с ним ассоциаты. Все дальнейшие операции по очистке интегральных белков осуществляются также в присутствии детергентов.

Модельные мембраны

Изучение физических свойств липидного слоя мембран осуществляется преимущественно на двух видах искусственных мембранных структур, образованных синтетическими фосфолипидами или липидами, выделенными из биологических источников: липосомах и бислойных липидных мембранах (БЛМ).

Липосомы.

Липосомы - это липидные везикулы (пузырьки), образующиеся из фосфолипидов в водных растворах. Чтобы получить липосомы, спиртовый раствор фосфолипидов впрыскивают в большой объем водного раствора фосфолипиды, нерастворимые в воде, образуют мелкие пузырьки, стенки которых состоят из одного липидного бислоя (однослойные липосомы).

Можно сначала высушить раствор фосфолипидов в органическом растворителе (например, хлороформе) в пробирке, добавить в пробирку водный раствор и хорошенько потрясти пробирку. Липиды переходят в водный раствор, теперь уже в виде многослойных липосом. Суспензию липосом обычно используют для изучения физических свойств липидного бислоя как вязкость, поверхностный заряд или диэлектрическая проницаемость, а также для изучения проницаемости для незаряженных молекул (слайд 10,11)

Атомы углерода в углеводородных цепях жирных кислот соединены между собой одинарными связями, вокруг которых, как на оси, разные участки цепи могут вращаться. Это вращение приводит к тому, что цепи могут находиться в самых различных конфигурациях (слайд 16)

В результате такого вращения жирнокислотные цепи приобретают как бы гибкость, хотя на самом деле они не изгибаются в полном смысле этого слова, а лишь могут поворачиваться вокруг связей между атомами, что и приводит к изгибу молекулы в целом.

Кинки

Возможность изменения конфигурации цепей жирных кислот имеет большое значение для растворения в липидном слое и переноса через него различных молекул и ионов. Ион попадает в полость внутри липидного бислоя, образуемую за счет соответствующих изгибов окружающих цепей жирных кислот.

Такая полость называется кинком (от английского слова kink - петля, изгиб). Кинки образуются в результате теплового движения молекул и ион может перемещаться в липидном слое мембраны, перескакивая из одного кинка в соседний (слайд 18).

В МЕМБРАНЕ

Гидрофобный эффект объединяющий молекулярные компоненты в мембранах, препятствует их выходу в водную фазу за пределы мембраны. В то же время силы межмолекулярного взаимодействия обычно не мешают молекулам в мембранах обмениваться друг с другом местами, поскольку площадь контакта между водой и гидрофобными участками при этом практически не изменяются. Вследствие этого молекулярные компоненты в мембранных системах сохраняют индивидуальную подвижность и могут диффузионным путем передвигаться в пределах мембраны.

Рассмотрим подвижность и типы движения основных молекул, входящих в состав биологической мембраны.

Для измерения подвижности отдельных липидов и их частей используют разнообразные методы. Так к полярной головке липида можно присоединить «спиновую метку», например нитроксильную группу (=N-О), имеющую неспаренный электрон. Спин этого электрона порождает парамагнитный сигнал, который обнаруживается методом электронного парамагнитного резонанса. Этот метод позволяет легко определить движение и ориентацию в бислое подобного спин – меченного липида. Такие опыты показали, что молекулы липидов легче всего осуществляют вращательные движения вокруг своей длинной оси. Время корреляции вращательного движения τс молекул (время поворотов на угол в 1) спин – меченых фосфолипидов, стеринов и жирных кислот в различных модельных и природных мембранах, находящихся в жидком составляет ≈10-9с. Вращательное движение имеет достаточно малое время корреляции и температуру ниже точки плавления жирно-кислотных цепей липидов в мембранах.

Латеральная диффузия. Липидные молекулы без труда меняются местами со своими соседями в пределах одного монослоя. Такое перемещение молекул обычно называют латеральной диффузией. Липидная молекула средних размеров диффундирует на расстоянии, равное длине большой бактериальной клетки (≈2 мкм), ≈ за 1с. Скорость латеральной диффузией существенно зависит от липидного состава мембран и температуры.

Флип-флоп переходы. Другой тип движения молекул липидов в мембранных системах – это трансбислойное движение (флип-флоп-переход). Исследование движения спин – меченых липидов показывают, что липидные молекулы в синтетических мембранах чрезвычайно редко пересказывают из одного монослоя мембраны в другой. Этот процесс имеет особое физиологическое значение, так как процесс биосинтез фосфолипидов и сборка мембраны протекают асимметрично. Активные центры ферментов биосинтеза фосфолипидов локализованы на одной, а не на двух сторонах мембраны. Например, фосфолипиды синтезируются и внедряются в мембрану на цитоплазматической стороне эндоплазматического ретикулума печени крысы и на внутренней стороне бактериальной цитоплазматической мембраны. Ясно, что эти липиды должны пересечь мембрану, чтобы достичь противоположной стороны бислоя.

Скорость трансмембранной миграции фосфолипидов в фосфолипидных везикулах пренебрежимо мала: ее характерное время составляет несколько суток или любая индивидуальная молекула липида осуществляет подобный флип-флоп-перескок реже, чем 1 раз в неделю. Такая малая скорость перехода связана с необходимостью преодолеть полярной головке липида углеводородную зону мембраны. Флип-флоп-переход может ускоряться в присутствии таких интегральных мембранных белков, как гликофорин, или при возмущениях в бислое, происходящих, например, при обработке фосфолипазами.

Однако имеются мембраны, в которых миграция липидов протекает очень быстро, с характеристическим временем порядка нескольких минут. Такие данные по лучены для эндоплазматического ретикулума печени крысы, а также для цитоплазматической мембраны грамположительных бактерий В. megaterium. В этих мембранах происходит синтез липидов, и в них, по-видимому, присутствуют специальные транслоказы, которые обеспечивают быструю трансмембранную миграцию липидных молекул. Такое предположение было высказано в отношении эндоплазматического ретикулума, но оно пока не нашло экспериментального подтверждения. Характерное время трансмембранной миграции липидов в мембране эритроцитов имеет промежуточное значение и составляет величины порядка нескольких часов в зависимости от структуры изучаемого липида. Было установлено, что скорость миграции возрастает при нарушениях цитоскелета, а также под действием агентов, влияющих на структуру липидного бислои (например, грамицидина А). Возможно, цитоскелет играет определенную роль в уменьшении скорости миграции липидов через бислои благодаря связыванию аминофосфолипидов. Характерно, что ни эндоплазматический ретикулум, ни бактериальная цитоплазматическая мембрана, для которых характерна высокая скорость флип-флопа перехода липидов, не связаны с цитоскелетом.

Литература:

1. Рубин А.Е. Биофизика. 2 том. М.Высшая школа, 2004.

2. Рыбин Н.И. Лекции по биофизике. Свердловск.СГУ,1990.

3. Антонов В.Ф.и др. Биофизика. – М, 2000–

4. Геннис Р. Биомембраны. Молекулярная структура и функции. – М.: Мир, 1997 – 624 с.

5. Владимиров Ю.А. с соавт. Биофизика. М., Медицина, 1983.

Контрольные вопросы.

1. Почему врачу надо знать основы мембранологи?

2. Какими методами изучают строение мембран и почему?

3. Для чего используют модельные системы?

КАРАГАНДИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

КАФЕДРА – медицинской биофизики и информатики

Лекция: Биологические мембраны.



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 199; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.203.172 (0.023 с.)