Как жизненный опыт родителей влияет на генетику детей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Как жизненный опыт родителей влияет на генетику детей



 

Как теперь известно, такие тонкие подстройки под влиянием окружающей среды могут передаваться из поколения в поколение. В замечательной работе, опубликованной в номере журнала Molecular and Cellular Biology за 1 августа 2003 г., исследователи из Университета Дьюка доказывают, что за счет обогащенной среды можно даже преодолеть генные мутации у мышей. Ученые исследовали влияние пищевых добавок на беременных мышей – носительниц аномального «гена агути». Такие мыши имеют золотистую окраску и страдают ожирением, из‑за которого становятся особо подвержены диабету, а также сердечно‑сосудистым и онкологическим заболеваниям.

 

Сестры агути. Годовалые генетически идентичные женские особи мышей агути. Обогащенный метильными группами рацион матерей меняет окрас их потомства с золотистого на бурый, а также уменьшает частоту случаев ожирения, диабета и рака. (Фото предоставлено Джертлом и Уотерлендом©)

 

В ходе эксперимента группа страдающих ожирением мышей агути получала пищевые добавки, богатые метильными группами (продаются в магазинах здоровой пищи): фолиевую кислоту, витамин B 12, бетаин и холин. Богатые метилом добавки были выбраны потому, что перед тем ряд свидетельств показали, что эта группа принимает участие в эпигенетических модификациях. Прикрепляясь к молекуле ДНК, метильные группы изменяют условия для связывания с ней регуляторных хромосомных белков. Если такие белки связываются с ДНК чересчур сильно, белковый «рукав» оказывается невозможно удалить, и содержащиеся в ДНК гены не поддаются считыванию. Метилирование ДНК способно подавить или изменить генную активность.

На сей раз газетные заголовки наподобие «Диета побеждает гены» говорили чистую правду. Матери, получавшие пищевые добавки, обогащенные метильной группой, производили на свет обыкновенных бурых мышей нормальной комплекции, хотя у них присутствовал тот же самый ген агути, что и у их собственных матерей. Что же до матерей, не получавших таких добавок, то их потомки имели золотистый окрас, ели вдвое больше обычных мышат и набрали в конце концов намного больший вес, чем их поджарые сверстники «псевдоагути».

Приведенный на предыдущей странице снимок, предоставленный Университетом Дьюка, производит огромное впечатление. Будучи генетически идентичными, две мыши кардинально отличаются по внешнему виду. Одна из них поджарая и бурая, другая – тучная и желтая. Кроме того, хотя этого и нельзя увидеть на фотографии, тучная мышь страдает диабетом, а поджарая полностью здорова.

Другие исследования обнаружили, что эпигенетические механизмы являются причиной целого ряда заболеваний – онкологических, сердечно‑сосудистых, диабета. Вообще говоря, только 5 % сердечников и раковых больных имеют право списывать свою болезнь на наследственность. Средства массовой информации, поднявшие большой шум вокруг открытия генов рака груди BRCA1 и BRCA2, почему‑то гораздо меньше распространялись о том факте, что в 95 % случаев рак груди возникает не из‑за уна следованных генов. У значительной части онкологических больных злокачественность возникает вследствие экологически обусловленных эпигенетических изменений, а не дефектов в генах. Не так давно выдающийся ученый и врач Дин Орниш открыл, что одна только смена диеты и образа жизни в течение 90 дней у пациентов с раком простаты меняет активность более чем 500 генов. Многие из этих генов изменяют биологические процессы, критически важные для формирования опухолей.

Эпигенетические свидетельства оказались столь убедительными, что некоторые особо смелые ученые даже рискнули вспомнить многократно обхаянного эволюциониста Жана‑Батиста Ламарка, считавшего, что приобретенные при взаимодействии с окружающей средой признаки могут передаваться по наследству. Философ Эва Яблонка и биолог Марион Лэм в своей вышедшей в 1995 г. книге «Эпигенетическое наследование и эволюция – ламаркистский аспект» пишут: «В последние годы специалисты по молекулярной биологии установили, что геном – объект гораздо более подвижный и подверженный влиянию среды, чем предполагалось ранее. Они показали также, что информация может быть передана потомкам иными путями, нежели базовая последовательность (код) ДНК».

Итак, мы вернулись к тому, с чего начали эту главу, – к среде. В лаборатории мне приходилось неоднократно наблюдать, как перемены в окружении влияют на изучаемые мной клетки. Но только в конце моей научной карьеры в Стэнфорде я проникся этой идеей по‑настоящему, когда обратил внимание, что эндотелиальные клетки, которые выстилают изнутри кровеносные сосуды, изменяют структуру и функцию в зависимости от среды. Например, если я добавлял в тканевую культуру раздражающие химические вещества, то клетки быстро превращались в некое подобие макрофагов – этих мусорщиков иммунной системы. Больше всего меня поразило, что превращение этих клеток происходило, даже если я разрушал их ДНК с помощью гамма‑лучей. Эндотелиальные клетки таким образом были энуклеированы, однако они полностью меняли свое биологическое поведение в ответ на раздражающие вещества – как если бы их ядра оставались нетронутыми. Эти клетки явно служили примером некоего «разумного» управления при полном отсутствии генов.

Через двадцать лет после того, как мой учитель Ирв Кенигсберг посоветовал мне обращать внимание на среду, если с клетками что‑то не в порядке, я наконец‑то в полной мере оценил этот совет. ДНК не управляет живыми организмами, и ядро – не мозг клетки. Точно так же, как вы или я, клетки приспосабливаются к окружению, в котором они живут. Иными словами, для особо непонятливых: все дело в среде!

 

* * *

 

Бурлящее поле эпигенетических исследований не только придало Жану‑Батисту Ламарку образ провидца – оно сделало похожим на него моего наставника, профессора Ирва Кенигсберга, вдохновившего меня на название этой главы. Опять же более чем пятьдесят лет спустя повторяю для особо непонятливых: все дело в среде!

 

Представьте себе Стэнфордское исследование, разрекламированное в прессе с заголовками вроде «Биология веры»! (Мне и сегодня приходится сдерживать себя, чтобы лишний раз не подчеркнуть, что новейшие исследования подтверждают выводы первого издания «Биологии веры». Это непросто, ведь долгое время мое заявление оставалось гласом вопиющего в пустыне.) Вот из U. S. News: «Окружающая среда одерживает победу над генами при формировании иммунной системы: исследования ученых». Из ScienceDaily: «Окружающая среда, а не гены, предписывает иммунные изменения у человека. Открытия ученых».

 

Согласно Стэнфордскому исследованию, три четверти изменений иммунной системы у однояйцевых близнецов происходили вследствие «ненаследственных» воздействий, связанных с окружающей средой, среди которых – микробы, токсины, диеты и вакцинации. По результатам этой работы воздействие факторов окружающей среды со временем сформировало иммунную систему обоих близнецов. Причем результаты у однояйцевых близнецов старше шестидесяти лет различались в большей степени, чем у близнецов младше двадцати лет. Стэнфордский микробиолог и иммунолог, ведущий исследователь Марк Дэвис заявляет: «Иммунная система здорового человека постоянно приспосабливается к встрече с враждебными микроорганизмами, дружественными кишечными микробами, пищевыми и другими компонентами, отодвигая на второй план влияние большинства наследственных факторов».

 

Все более очевидным становится ложность самого убеждения, будто программирование генома предсказывает, какими болезнями в жизни будут страдать люди. Что же до проекта «Геном человека», то вызванное им сомнение в традиционном понимании эволюции только увеличилось в масштабах. Когда я писал эту главу, исследования того времени предполагали, что у человека все‑таки на 1 тысячу генов больше, чем у простого червя Caenorhabditis, но теперь даже это незначительное преимущество исчезло. Недавние технические достижения в чтении генов показали, что у человека их всего около 19 тысяч – или приблизительно столько же, сколько у этого червя. Более того, сегодня происхождение более 90 % генов человека отслеживается на более сотни миллионов лет тому назад – следовательно, в геноме червя и человека в основном содержатся схожие гены.

 

Таким образом, если вести счет эволюции в терминах генной метрики, то мы, люди, находимся значительно ниже к основанию «генеалогического древа» – картины, созданной в 1886 г. немецким эмбриологом Эрнстом Геккелем вскоре после того, как Дарвин, а потом Ламарк огласили свои представления об эволюции. У Геккеля эволюция животных прослеживается от простейших (бактерий) на стволе дерева до людей, занимающих его верхние ветви. Такая родословная имела смысл, когда ДНК расценивалась наукой как фактор управления жизнью, – ясно, что эволюционные биологи считали, что с продвижением по дереву более высокие эволюционные черты будут связаны со все большей генетической сложностью. Однако теперь, когда человек опустился к самому основанию генетического древа, стало более очевидным, что популяции генов не определяют эволюцию организма.

 

Вот еще один факт, который я привожу на своих лекциях в качестве предостережения против придания чрезмерного значения генам: ген кодирования кератина волос также определяет и все следующие структуры: кожу, ногти, когти, копыта и рога. То есть кодирующий синтез кератиновых белковых строительных блоков ген не контролирует способы использования молекул кератина.

 

Итак, кодирующие белок гены используются как строительные блоки клеток, но не определяют структуру организма или его сложность. Это ставит перед нами фундаментальный вопрос: кто же за это отвечает?

 

Поиски ответа приводят к следующему, совершенно неожиданному выводу из проекта «Генома человека»: гены, кодирующие белковые строительные блоки клеток, составляют менее 2 % от общего количества генома ДНК, и поэтому значительная часть ДНК не вносит вклада в популяцию белков клетки. Предположив, что эти ДНК не являются функциональными, Фрэнсис Крик обозначил их как «мусорные». Такой термин, с готовностью принятый публикой, раздражает большое число биологов, которым претит сама идея, что клетки несут в себе огромное количество «бесполезных» ДНК. Поэтому при обсуждении некодирующей ДНК генетики предпочитают использовать термин «темная материя».

 

Сосредоточившись на раскрытии тайн этой темной материи, консорциум ученых‑генетиков создал проект Энциклопедия элементов ДНК, или ENCODE (сокращение от Encyclopedia of DNA Elements), чтобы разобраться в функциях так называемой «мусорной ДНК» генома. Исследования на момент публикации первого издания этой книги показали, что более 80 % некодирущих ДНК заняты регулированием производства и сборки белков, кодируемых генами. Большим открытием также стало, что «темные» ДНК содержат механизмы, благодаря которым информация об окружающей среде может использоваться для изменения считывания генов, кодирующих белок. Выяснилось, что темные ДНК используют эпигенетические механизмы, дающие человеческой клетке 19 тысяч генных программ, благодаря которым можно кодировать более сотни тысяч различных молекул белка!

 

Возможно, самым большим сюрпризом из находок консорциума, полученных по результатам 300 лет компьютерного времени, оказался вывод, что большая часть темных ДНК состоит из генетических «переключателей». Более четырех миллионов генетических переключателей в некодирующей ДНК образуют информационную кабельную систему, разобраться в которой почти невозможно. Такая система включает и выключает гены и обеспечивает механизм перезаписи структуры белка, кодируемой ДНК.

 

Подобная сложная информационная кабельная система напоминает мне игрушечный набор компании A. C. Gilbert Erector, от которого я был без ума в детстве. К ужасу родителей, в этот набор входили сотни запчастей, включая гайки и болты, различные металлические балки с размеченными отверстиями для сборки, шкивы, колесики, шестерни, а также маленький электромотор. Главное достоинство такого набора, как и современного конструктора LEGO в том, что пользователь может построить модель, а затем разобрать ее и без конца создавать из тех же частей нечто совершенно другое.

 

В аналогичном биологическом конструкторе гены являются кирпичиками физического здания, а некодирующая ДНК – «инструкцией» по сборке конкретных моделей (животных и растений) из набора, куда входят одни и те же кирпичики. Как и в конструкторе A. C. Gilbert Erector, из произведенных генами белков может быть собрано, разобрано, а затем вновь собрано множество разных организмов. Образ тела каждого организма, закодированный в темной ДНК, непосредственно связан с динамическим окружением через эпигенетические механизмы, интерпретирующие, переводящие и контролирующие активность генов, кодирующих белок.

 

Результаты деятельности Энциклопедии элементов ДНК существенно изменили исследовательские парадигмы, связанные с такими заболеваниями, как рак. До появления новых сведений о роли темной ДНК изучающие генетические заболевания ученые стремились лишь распознать мутации в генах генома, кодирующих белки. Но благодаря проводимой Энциклопедией оценке мы узнаем, как много связанных с заболеваниями мутаций скрывает темная материя или некодирующая ДНК, а также сколько их еще предстоит открыть. Объединив данные по проекту «Генома человека» и Энциклопедии элементов ДНК, исследователи могут распознать некодирующие участки ДНК, называемые «сверхчувствительными» областями. Эти участки мусорных ДНК показывают те же уровни мутаций, что и в кодирующих белок генах. Прочитав геномы 90 пациентов с раком груди, простаты и опухолью мозга, исследователи обнаружили около сотни мутаций некодирующих, сверхчувствительных областей, напрямую связанных с раком. Эти первые исследования таких ДНК, а также изучающие влияние некодирующей ДНК на другие заболевания сегодня находятся под пристальным вниманием.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 109; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.136.170 (0.013 с.)