Регулирование звездного движения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Регулирование звездного движения



 

Первый вопрос, который сразу же встает при изучении движений звезд,‑ это вопрос, есть ли какая‑нибудь закономерность в звездных движениях? Есть ли дороги в нашем звездном городе, по которым движется звездное население, регулируется ли как‑либо это движение? Если такое регулирование есть, то роль милиционера в нем играет, конечно, закон всемирного тяготения.

Мы хотим знать не только то, что звезды движутся, не только то, какова их скорость, но и то, каковы законы их движения. Для этого нужно было накопить большой наблюдательный материал и суметь его проанализировать.

В результате такого анализа было найдено, что некоторые группы звезд движутся в пространстве параллельно и с одинаковой скоростью, будучи связаны взаимным тяготением и общностью происхождения. Такова, например, группа слабых звезд вокруг Альдебарана в созвездии Тельца, называемая Гиадами. Такова группа из пяти ярких звезд Большой Медведицы, а также некоторых других звезд, видимых в разных частях неба.

Кроме таких групповых движений, все звезды принимают участие в сложном вращении вокруг центра тяжести всей нашей звездной системы, но об этом мы поговорим в главе 11. Кроме участия в систематических движениях, почти каждая звезда имеет еще свою собственную скорость, подобно комару в комарином рое, относимом ветром.

 

Куда мы несемся?

 

Прежде чем изучать систематические движения звезд, надо выяснить, не влияет ли на их видимое движение наше собственное перемещение в пространстве. Ведь прежде чем выяснить истинное устройство Солнечной системы, пришлось же учесть кажущиеся движения светил, вызванные суточным и годичным движением Земли. Можно себе представить, что звезды в пространстве неподвижны, а наша Солнечная система несется среди них. Тогда нам казалось бы, что звезды движутся, расступаясь там, куда мы несемся, и смыкаясь в той стороне неба, откуда мы удаляемся, как деревья при нашей прогулке по лесу. Но в действительности звезды ‑ не неподвижные деревья. Каждая из них движется, и их лучше сравнить с огоньками на носу лодок в большом порту, в который тихо входит ночью наш пароход. Ялики и шлюпки тихо скользят по всем направлениям, неся с собой в темноте свои огоньки. Несмотря на этот хаос движений, мы заметим, что в общем, в среднем огоньки лодок перед нами как бы расступаются, когда мы к ним подплываем, и смыкаются позади нас. Для обнаружения движения Солнечной системы можно допустить, что движения звезд беспорядочны, хаотичны. Взяв на небе участки с достаточным числом звезд, мы рассмотрим среднее движение звезд в них. Их хаотические движения в разные стороны взаимно исключатся, и останется только то движение, которое для них всех является общим. Звезды в такой площадке в среднем движутся в одну сторону, как стадо коров, в котором каждая бродит туда или сюда, пощипывая траву и подаваясь все же вперед вместе со всем стадом на свежую траву.

В нашем распоряжении есть еще спектральный анализ, позволяющий определить, в каком участке неба звезды в среднем приближаются к нам с наибольшей скоростью к в каком удаляются. Эти участки на небе, очевидно, должны располагаться прямо друг против друга. Из такого анализа лучевых скоростей звезд можно получить скорость и направление движения Солнечной системы, а из анализа собственных движений ‑ только ее направление.

Изучая эти средние систематические движения звезд, являющиеся отражением движения всей Солнечной системы, мы приходим к заключению, что она со скоростью 20 км/сек несется в направлении созвездий Лиры и Геркулеса (Точнее говоря, это направление близко к границе между этими созвездиями)). Это ‑ ее движение по отношению к сравнительно близким звездам, взятым в совокупности. Оно сказывается в изменении видимого положения звезд, подобно тому, как меняется для вас видимое положение коров в том же пасущемся стаде, если вы пойдете через него насквозь. Ввиду относительности движения в данном случае безразлично ‑ вы ли пробираетесь сквозь стадо, оно ли минует вас на своем пути. Подобно этому мы движемся по отношению к звездам.

Скорость Солнечной системы в этом движении того же порядка, что и собственные скорости звезд. Нечего опасаться, что, летя к созвездию Лиры, мы на него налетим и разобьем его в куски. Скорее можно было бы опасаться, что пуля, пущенная вверх, в «воздушный флот», разобьет его. Созвездие Лиры ‑ лишь направление, по которому видно множество звезд. Пространство между ними так же просторно, как и пространство между звездами, окружающими Солнце сейчас. Звезду от звезды отделяют световые годы. Если у вас есть охота, попробуйте подсчитать, через сколько лет мы приблизимся вдвое к яркой звезде Веге (пренебрегая ее движением), если до нее 25 световых лет, а наша скорость 20 км/сек.

Изучение звездных движений развивается, как говорят, методом последовательных приближений. Поясним это применительно к изучению движений звезд. Сначала мы считаем движения звезд хаотичными и выявляем движение Солнечной системы. Затем учитываем его влияние на видимые движения звезд и после этого выявляем систематические движения групп звезд. Узнав их, мы вводим поправку в наше первоначальное предположение о хаотичности звездных движений и снова, уже правильнее, определяем движение Солнца и опять повторяем свои дальнейшие исследования. Так, постепенно удается разобраться в кажущемся хаосе многочисленных движений звезд в нашей Вселенной и уточнить картину, нарисованную поэтом:

Небесный свод, горящий славой звездной,

Таинственно глядит из глубины,

И мы плывем, пылающею бездной

Со всех сторон окружены.

(Тютчев)

Интересно отметить, что своевольные, как нам кажется, скорости звезд (как отдельных коров в стаде) тем больше, чем сами звезды легче. Большинство тяжелых гигантов, как тучные люди, двигается медлительно, а легкие карлики подвижны как детвора, впрочем... есть подозрение, что в звездной семье в смысле возраста детворой‑то являются как раз гиганты, а не карлики. Но это вопрос уже совсем другого рода.

Поучительно, что в газе, состоящем из разных молекул, более тяжелые молекулы тоже двигаются более медленно

 

Снятие мерки со звезд

 

Размеры планет легко рассчитать, зная расстояния до них и измерив угловой диаметр видимого их диска. Но как снять мерку со звезды, если даже в самый мощный телескоп ее диска не видно, так мал его угловой диаметр? Даже в 5‑метровый телескоп все звезды видны как точки. Тут нам опять помогает физика.

Поскольку звезды излучают почти как абсолютно черное тело, закон излучения ими энергии в разных частях спектра известен. Если знать температуру звезды и ее светимость, то можно вычислить полную энергию, испускаемую звездой. Но для нее, как для черного тела, теоретическая физика умеет вычислить полную энергию, испускаемую одним квадратным сантиметром ее поверхности. По закону Стефана ‑ Больцмана она пропорциональна четвертой степени температуры. Если мы разделим определенную таким образом полную энергию, испускаемую звездой, на энергию, испускаемую одним квадратным сантиметром ее поверхности, то мы получим, очевидно, величину поверхности звезды. Звезда ‑ шар, и, зная ее поверхность, уже школьник сможет вычислить ее диаметр.

Этот способ снятия мерки со звезд вполне надежен, но, как и всегда в науке, естественно хотелось бы найти возможность его проверить. Проверочный способ, применимый пока лишь к наиболее ярким звездам и с наибольшим угловым диаметром диска, был придуман в 1920 г. Он основан на явлении, называемом интерференцией. Для его осуществления Пизу в США пришлось преодолеть ряд технических затруднений, связанных с тем, что далее наибольший в мире телескоп оказался для данной цели недостаточно большим.

Выход из положения нашли, приделав на конце 2 1/2‑метрового телескопа (наибольшего в то время) стальную ферму длиной 6 м, по которой на тележке передвигались два больших плоских зеркала, принимавших свет звезды и отражавших его на зеркало телескопа. Тогда в телескоп изображение звезды представлялось крохотным полосатым кружком. При определенной величине расстояний между зеркалами полоски на этом кружке исчезали, и тогда теория интерференции позволяла вычислить угловой диаметр невидимого диска звезды. Зная расстояние до звезды, можно было вычислить и ее линейный диаметр.

Первая звезда, диаметр которой в 1920 г. удалось измерить «непосредственно» ‑ интерферометром, была яркая красная звезда в созвездии Ориона ‑ Бетельгейзе. Вообще первые измерения удались для гигантских красных звезд, не особенно к нам близких, но у которых угловые размеры, видимые с Земли, ожидались наибольшими. После измерения десятка таких звезд наступил длительный перерыв ‑ дальше мощи инструмента оказалось недостаточно. В 1956 г. в Англии удалось наконец измерить диаметр Сириуса, а в 1963 г. в Австралии измерили диаметр Беги. Это ‑ белые звезды, гораздо меньшие, чем красные гиганты, но одни из ближайших к нам.

Результаты всех этих измерений и расчетов мы приведем немного позже. Они показывают крайнее разнообразие звездных размеров. Отметим лишь, что одной из наибольших среди известных звезд является звезда VV в созвездии Цефея. Она больше Солнца по диаметру по крайней мере в 1600 раз. Есть звезды, которые гораздо меньше Солнца.

 

Дьявольские звезды

 

Первую дьявольскую звезду открыли арабы. Это была β Персея, которую они, собственно говоря, назвали просто «дьяволом» (Эль‑Гуль). Она поразила их тем, что будучи обычно около 2‑й звездной величины, она вдруг ослабевала почти до 4‑й ‑ она менялась на небесах, считаемых неизменными, где живет Аллах. Чем может быть такая звезда, как не звездой дьявола, если не им самим!

После долгой смены исторических событий и возникновения новых очагов культуры, несколькими веками позже изменение блеска β Персея, Эль‑Гуля, переделанного европейцами в Алголя, в 1670 г. подметили в Европе.

Еще через сто с лишним лет глухонемой от рождения любитель астрономии Гудрайк обнаружил периодичность изменения блеска Алголя. Его период оказался 2 дня 20 часов 49 минут. Но из них 2 дня 11 часов звезда остается постоянного блеска, а затем в течение 5 часов теряет 2/3 своего блеска с тем, чтобы через 5 часов снова к нему вернуться. Кривая изменения блеска Алголя в. зависимости от времени изображена на графике, построенном на основании современных нам измерений с помощью фотоэлектрического фотометра (рис. 144).

Странное и упорное поведение дьявольской звезды было объяснено тем, что тут, собственно, не одна звезда, а две, но одна гораздо ярче другой. Они обращаются друг около друга по орбите так, что по временам менее яркая частично закрывает от нас более яркую, производя периодические затмения.

Правильность объяснения была окончательно подтверждена в конце прошлого века, когда оказалось, что Алголь ‑ спектрально‑двойная звезда, у которой спектр слабо светящегося спутника невидим, как и следовало ожидать. При этом в момент затмения линии спектра занимают нормальное место, т. е. звезда движется в это время по орбите под прямым углом к нашему лучу зрения (не к нам и не от нас), как и должно быть. Кроме того, между главными минимумами блеска было обнаружено вторичное небольшое ослабление блеска, соответствующее затмению слабой звезды более яркой.

Было открыто много других двойных звезд этого же типа, названных затменно‑двойными, или алголями. Исследование кривых изменения их блеска в совокупности со спектральными данными позволяет изучить эти звезды так подробно и точно, как этого нельзя сделать ни в каком другом случае. Поэтому «дьявольские» звезды среди всех звезд для нас наименее загадочны, и дьявольского в них не остается для нас ничего, кроме разве «дьявольски» подробной их изученности.

 

Рис. 144. Кривая изменения блеска 'дьявольской звезды' ‑ Алголя и ее происхождение. Алголь ‑ двойная звезда, и составляющие его периодически затмевают одна другую. Видно, что более яркая звезда заметно освещает обращенное к ней полушарие более слабой

В итоге мы находим их форму и размеры по сравнению с Солнцем, размеры и форму орбиты и ее положение в пространстве, светимость звезд и их температуру, массы звезд и характер затмений, а сверх того иногда можем изучить строение их атмосфер почти так же подробно, как у Солнца, хотя в телескоп эти звезды по виду ничем не отличаются от любых других звезд и кажутся такими же светлыми точками. Благодаря близости друг к другу и возникающим отсюда сильным приливам в массах этих звезд форма их не шарообразная, а вытянутая. Они вытянуты по направлению друг к другу и обращаются как бы «нос к носу».

Много звезд типа Алголя открыл и изучил в начале нашего века московский астроном С. Н. Блажко.

 

Рис. 145. Кривая изменения блеска β Лиры. Вверху изменение блеска звезды наглядно изображено величиной белых кружков

По кривой блеска этих звездных систем астрономы читают их свойства почти так же свободно, как хороший музыкант читает ноты В. П. Цесевич обладает наибольшим в СССР собранием собственных наблюдений звезд, меняющих блеск, а Д. Я. Мартынов известен тем, что «с пристрастием» допрашивает бывшие «дьявольские» звезды об их строении со столь разных точек зрения и разделов науки, что им ничего не остается, как разоблачаться перед ним от остатков своих «тайн».

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 64; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.190.232 (0.013 с.)